skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lipid Mass Tags via Aziridination for Probing Unsaturated Lipid Isomers and Accurate Relative Quantification**
Abstract Knowing concentrations of lipids is essential for understanding their physiological functions and discovering new disease biomarkers. However, it is highly challenging to accurately quantify lipids due to structural diversity and multiple isomeric forms of lipids. To address these critical gaps, we have developed a novel aziridine‐based isobaric tag labelling strategy that allows (i) determination of lipid double‐bond positional isomers, (ii) accurate relative quantification of unsaturated lipids, and (iii) improvement of ionization efficiencies of nonpolar lipids. The power of this method is demonstrated in characterization and quantification of various categories of lipids such as fatty acids, phosphoglycerol lipids, cholesteryl esters (CE), and glycerides. 17 CE lipid isomers were identified and quantified simultaneously from Alzheimer's disease (AD) mouse serum without using lipid standards. Among them, 6 CE isomers showed significant changes in concentrations in AD serum.  more » « less
Award ID(s):
2145487
PAR ID:
10371989
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
39
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for quantitative metabolomics; however, quantification of metabolites from NMR data is often a slow and tedious process requiring user input and expertise. In this study, we propose a neural network approach for rapid, automated lipid identification and quantification from NMR data. Multilayered perceptron (MLP) networks were developed with NMR spectra as the input and lipid concentrations as output. Three large synthetic datasets were generated, each with 55,000 spectra from an original 30 scans of reference standards, by using linear combinations of standards and simulating experimental‐like modifications (line broadening, noise, peak shifts, baseline shifts) and common interference signals (water, tetramethylsilane, extraction solvent), and were used to train MLPs for robust prediction of lipid concentrations. The performances of MLPS were first validated on various synthetic datasets to assess the effect of incorporating different modifications on their accuracy. The MLPs were then evaluated on experimentally acquired data from complex lipid mixtures. The MLP‐derived lipid concentrations showed high correlations and slopes close to unity for most of the quantified lipid metabolites in experimental mixtures compared with ground‐truth concentrations. The most accurate, robust MLP was used to profile lipids in lipophilic hepatic extracts from a rat metabolomics study. The MLP lipid results analyzed by two‐way ANOVA for dietary and sex differences were similar to those obtained with a conventional NMR quantification method. In conclusion, this study demonstrates the potential and feasibility of a neural network approach for improving speed and automation in NMR lipid profiling and this approach can be easily tailored to other quantitative, targeted spectroscopic analyses in academia or industry. 
    more » « less
  2. Atopic dermatitis (AD) is a chronic inflammatory disease that affects approximately 2-5% of adults worldwide. The pathogenesis of AD continues to be a well-debated point of conjecture, with numerous hypotheses having been proposed. AD conditions are associated with increased populations of Staphylococcus aureus and reduced skin lipids. In this study, we evaluate the ability of S. aureus to permeate across human stratum corneum (SC) exhibiting both normal and depleted lipid conditions consistent with AD. This permeation would enable bacteria to interact with underlying viable epidermal cells, which could serve as a trigger for inflammation and disease onset. Our results indicate that permeation of S. aureus through SC exhibiting normal lipid conditions is not statistically significant. However, bacteria can readily permeate through lipid depleted tissue over a 9-d period. These findings suggest that S. aureus may potentially act as the mechanistic cause, rather than merely the result of AD. 
    more » « less
  3. Abstract The use of cultured cells has been instrumental in studying biochemical, molecular, and cellular processes. The composition of serum that cells are maintained in can have a profound impact on important cellular checkpoints. Cell growth and apoptosis are analyzed in an estrogen receptor positive breast cancer cell line in the presence of serum that have been treated to remove steroids or lipids, as well‐described in the literature. It is shown that maintaining cells in the presence of charcoal‐dextran‐treated serum causes reduced growth rate, which can be reversed by the addition of estradiol. Silica‐treated‐serum also slows down cell growth and induces apoptosis. In order to investigate the role of lipids in these phenotypes, the levels of a wide range of lipids in different sera are investigated. It is shown that silica‐treatment significantly depletes phosphatidylcholines and cholesterol. It is also shown that lipogenesis is stimulated when cells are cultured with silica‐treated‐serum and this is reversed by the addition of exogenous lipids, which also restores growth rate and apoptosis. The results show that cultured cells are sensitive to different serum, most likely due to the differences in levels of structural and signaling metabolites present in their growth environment. 
    more » « less
  4. Self-assembled lipid tubules are unique supramolecular structures in cell functions. Lipid tubules that are engineered in vitro are of great interest for technological applications ranging from the templated synthesis of nanomaterials to drug delivery. Herein, we report a study to create long lipid tubules from a mono-unsaturated lipid, 1-stearoyl-2-oleoyl- sn-glycero -3-phosphocholine (SOPC), due to the effect of calcium ions. We found that calcium ions at mM concentrations promote the self-assembly of SOPC lipids into inter-connected hollow lipid tubes that are μm thick and as long as a few millimeters. Higher calcium concentration leads to an increase in the numbers of lipid tubules formed, but has little effect on tubule diameter. Calcium ions also stabilize lipid tubules, which break up upon the removal of ions. We showed that the lipid tubule-promoting effect is general for divalent ions. We were able to vary the morphology of lipid tubules from thin tube to “strings of pearls” structures or increase the tubule thickness by mixing SOPC with other lipids of different spontaneous curvature effects. Our results reveal that the divalent charges of calcium ions and the asymmetric mono-unsaturated structure of SOPC acyl chains act in combination to cause the formation of lipid tubules. 
    more » « less
  5. Claesen, Jan (Ed.)
    ABSTRACT Atopic dermatitis (AD) is associated with a deficiency of skin lipids, increased populations of Staphylococcus aureus in the microbiome, and structural defects in the stratum corneum (SC), the outermost layer of human skin. However, the pathogenesis of AD is ambiguous, as it is unclear whether observed changes are the result of AD or contribute to the pathogenesis of the disease. Previous studies have shown that S. aureus is capable of permeating across isolated human SC tissue when lipids are depleted to levels consistent with AD conditions. In this study, we expand upon this discovery to determine the mechanisms and implications of bacterial penetration into the SC barrier. Specifically, we establish if bacteria are permeating intercellularly or employing a combination of both inter- and intracellular travel. The mechanical implications of bacterial invasion, lipid depletion, and media immersion are also evaluated using a newly developed, physiologically relevant, temperature-controlled drip chamber. Results reveal for the first time that S. aureus can be internalized by corneocytes, indicating transcellular movement through the tissue during permeation, consistent with previous theoretical models. S. aureus also degrades the mechanical integrity of human SC, particularly when the tissue is partially depleted of lipids. These observed mechanical changes are likely the cause of broken or ruptured tissue seen as exudative lesions in AD flares. This work further highlights the necessity of lipids in skin microbial barrier function. IMPORTANCE Millions of people suffer from the chronic inflammatory skin disease atopic dermatitis (AD), whose symptoms are associated with a deficiency of skin lipids that exhibit antimicrobial functions and increased populations of the opportunistic pathogen Staphylococcus aureus . However, the pathogenesis of AD is ambiguous, and it remains unclear if these observed changes are merely the result of AD or contribute to the pathogenesis of the disease. In this article, we demonstrate the necessity of skin lipids in preventing S. aureus from penetrating the outermost barrier of human skin, thereby causing a degradation in tissue integrity. This bacterial permeation into the viable epidermis could act as an inflammatory trigger of the disease. When coupled with delipidated AD tissue conditions, bacterial permeation can also explain increased tissue fragility, potentially causing lesion formation in AD patients that results in further enhancing bacterial permeability across the stratum corneum and the development of chronic conditions. 
    more » « less