skip to main content


Title: Multidisciplinary Education on Big Data + HPC + Atmospheric Sciences
We present a new initiative to create a training program or graduate-level course (cybertraining.umbc.edu) in big data applied to atmospheric sciences as application area and using high-performance computing as indispensable tool. The training consists of instruction in all three areas of "Big Data + HPC + Atmospheric Sciences" supported by teaching assistants and followed by faculty-guided project research in a multidisciplinary team of participants from each area. Participating graduate students, post-docs, and junior faculty from around the nation will be exposed to multidisciplinary research and have the opportunity for significant career impact. The paper discusses the challenges, proposed solutions, practical issues of the initiative, and how to integrate high-quality developmental program evaluation into the improvement of the initiative from the start to aid in ongoing development of the program.  more » « less
Award ID(s):
1730250 1726023
NSF-PAR ID:
10067778
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the Workshop on Education for High-Performance Computing (EduHPC-17)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. During 2018, 2019, and 2020, the UMBC CyberTraining initiative “Big Data + HPC + Atmospheric Sciences” created an online team-based training program for advanced graduate students and junior researchers that trained a total of 58 participants. The year 2020 included 6 undergraduate students. Based on this experience, the authors created the summer undergraduate research program Online Interdisciplinary Big Data Analytics in Science and Engineering that will conduct 8-week online team-based undergraduate research programs (bigdatareu.umbc.edu) in the summers 2021, 2022, and 2023. Given the context of many institutions potentially expanding their online instruction, we share our experiences how the successful lessons from CyberTraining transfer to a high-intensity full-time online summer undergraduate research program. 
    more » « less
  2. Opportunities for undergraduate research in STEM programs at community colleges can be few where lower-division science curriculum emphasizes classroom and laboratory-based learning and research laboratories are limited in number. This is particularly true in the geosciences where specialized programs are extremely rare. Urban serving academic research institutions have a unique role and opportunity to partner with regional community college programs for undergraduate research early-on in student post-secondary educational experiences. Programs built for community college transfer students to urban serving undergraduate programs can serve to integrate students into major programs and help reduce transfer shock. The benefits of exploring research as an undergraduate scholar are numerous and include: building towards mastery of technical skills; developing problem-solving in a real-world environment; reading and digesting scientific literature; analyzing experimental and simulation data; working independently and as part of a team; developing a mentoring relationship with a research advisor; and building a sense of belonging and confidence in a scientific field. However, many undergraduate research internships are targeted towards junior-level STEM majors already engaged in upper-division coursework and considering graduate school which effectively excludes community college students from participating. The Center for Climate and Aerosol Research (CCAR) Research Experience for Undergraduate program at Portland State University serves to help build the future diverse research community. 10-week intern research experiences are paired with an expert faculty mentor are designed for students majoring in the natural/physical sciences but not necessarily with a background in climate or atmospheric science. Additional programmatic activities include: 1-week orientation and training using short courses, faculty research seminars, and hands-on group workshops; academic professional and career development workshops throughout summer; journal club activities; final presentations at end of summer CCAR symposium; opportunities for travel for student presentations at scientific conferences; and social activities. Open to all qualifying undergraduates, since 2014 the program recruits primarily from regional (Northwest) community colleges, rural schools, and Native American serving institutions; recruiting students who would be unlikely to be otherwise exposed to such opportunities at their home institution. Over the past 9 cohorts of REU interns (2014-2019), approximately one third of CCAR REU scholars are community colleges students. Here we present criteria employed for selection of REU scholars and an analysis of selection biases in a comparison of students from community colleges, 4-year colleges, and PhD granting universities. We further investigate differential outcomes in efficacy of the REU program using evaluation data to assess changes over the program including: knowledge, intrinsic motivation, extrinsic motivation, science identity, program satisfaction, and career aspirations. In this presentation, we present these findings along with supportive qualitative analyses and discuss their implications for community college students in undergraduate research programs in geosciences. 
    more » « less
  3. null (Ed.)
    The National Science Foundation (NSF) Emerging Frontiers and Innovation (EFRI) Research Experience and Mentoring (REM) program nationally supports hands-on research and ongoing mentorship in STEM fields at various universities and colleges. The NSF EFRI-REM Mentoring Catalyst initiative was designed to build and train these robust, interactive research mentoring communities that are composed of faculty, postdoctoral associates and graduate student mentors, to broaden participation of underrepresented groups in STEM research who are funded through NSF EFRI-REM. This work-in-progress paper describes the first five years of this initiative, where interactive training programs were implemented from multiple frameworks of effective mentoring. Principal investigators, postdoctoral associates and graduate students are often expected to develop and establish mentoring plans without any formal training in how to be effective mentors. Since the start of this initiative, over 300 faculty, postdoctoral associates and graduate students have been trained on promising practices, strategies, and tools to enhance their research mentoring experiences. In addition to formal mentor training, opportunities to foster a community of practice with current mentors and past mentor training participants (sage mentors) were provided. During these interactions, promising mentoring practices were shared to benefit the mentors and the different mentoring populations that the EFRI-REMs serve. The community of practice connected a diverse group of institutions and faculty to help the EFRI-REM community in its goal of broadening participation across a range of STEM disciplines. Those institutions are then able to discuss, distill and disseminate best practices around the mentoring of participants through targeted mentored training beyond the EFRI-REM at their home institutions. Not only does the EFRI-REM Catalyst initiative focus on broadening participation via strategic training of research mentors, it also empowers mentees, including undergraduate and graduate students and postdoctoral associates, in their research experiences through an entering research undergraduate course and formal mentoring training workshops. Future expansion to other academic units (e.g., colleges, universities) builds on the research collaborations and the initiatives developed and presented in this work-in-progress paper. A long-term goal is to provide insights via collaborative meetings (e.g., webinars, presentations) for STEM and related faculty who are assembling an infrastructure (e.g., proposals for the ERFI-REM program) across a range of research structures. In summary, this work-in-progress paper provides a description of the design and implementation of this initiative, preliminary findings, expanding interactions to other NSF supported Engineering Research Centers, and the future directions of the EFRI-REM Mentoring Catalyst initiative. 
    more » « less
  4. null (Ed.)
    As literature indicates, historic racism and implicit bias throughout academia have been profound metrics leading to a lack of diversity, as related to people from underrepresented groups according to race and ethnicity, among biomedical sciences graduate students in U.S. universities. Recognizing such challenges, a team of biomedical scientists and inclusivity educators developed and implemented a pilot training program within an academic health sciences center as an initial step to educate faculty and staff regarding their roles in the promotion of an inclusive academic environment, receptive to all students, including underrepresented students. The 3-h workshop included didactic modules, videos, teaching modules, and active attendee participation. Faculty and staff were presented common terminology and ways to promote the development of an inclusive and diverse academic workforce. Compared with pre-workshop, post-workshop survey results indicated a statistically significant improvement in attendee knowledge of correctly identifying definitions of “implicit bias,” “status leveling,” “color-blind racial attitudes,” “tokenism,” and “failure to differentiate.” Additionally, by the end of the workshop, participants had a statistically significant increase in self-perceptions regarding the importance of improving diversity and recognizing biases and stereotypes in graduate education, knowing what to say when interacting with people from different cultures, and the ability to acknowledge bias when mentoring students from groups underrepresented in the biomedical field. This preliminary initiative was successful in the introduction of faculty and staff to the importance of fostering an inclusive academic environment and thereby developing a diverse workforce. 
    more » « less
  5. The Rising Engineering Education Faculty Experience program (REEFE) is a professional development program that connects graduate students in engineering education with faculty members at teaching-focused institutions. The program goal is to simultaneously support faculty growth in engineering education and graduate student growth as academic change agents. Our program has transitioned from a partnership between one engineering education graduate program and one engineering institution to a consortium of engineering education graduate programs that sends students to multiple institutions across the country. The REEFE Consortium also developed a unique partnership with the Making Academic Change Happen initiative to offer continuous training to graduate students during their REEFE experience. Many positive outcomes have come from the development of the REEFE Consortium, including better graduate training in research at the coordinating institution, a better understanding of program logistics, and new and strengthened professional relationships. We discovered a number of challenges associated with providing intensive professional development opportunities to graduate students, including timing of experiences relative to degree progress, loss of connection to the home research community, and financial impact, especially as it relates to travel and housing. While a search of existing literature in professional development in higher education has provided best practices for existing programs, there is little to no available research highlighting barriers that exist to offering different types of professional development opportunities to graduate student populations. These barriers are important to highlight as they provide critical information needed in the design and decision making for those seeking to create useful professional development opportunities for graduate populations. This paper provides an updated description of the Rising Engineering Education Faculty Experience program as we attempt to scale the program. We summarize the existing literature on barriers to participation in professional development opportunities for graduate students. Finally, we describe how REEFE both addresses and fails to address these barriers. 
    more » « less