- Award ID(s):
- 1642513
- NSF-PAR ID:
- 10067791
- Date Published:
- Journal Name:
- Chemical engineering education
- Volume:
- 52
- Issue:
- 3
- ISSN:
- 0009-2479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Using low-cost electronic components and building blocks, we have developed an effective teaching module where students design and test light-scattering, air-quality sensors to introduce them to chemical and environmental engineering research. This module has been successful in engaging the public, developing citizen scientists, and bridging gaps in understanding. To date, we have visited over 30 middle school and high school classrooms and over 1,000 students.more » « less
-
Abstract Many STEM disciplines are underrepresented to High School students. This is problematic as many students' decisions for college are shaped by their experiences and achievements in high school. Short content‐oriented modules have been shown to encourage science identity and otherwise benefit the students' learning. Following the ASBMB's outreach protocol, we developed a short content‐oriented module aimed at a high school biology classroom. Students interacted with 3D models of DNA and transcription factors while exploring structure–function relationships and introductory biochemistry topics. The high school teacher was impressed with the students' response to the module, specifically the ease with which students learned, their enthusiasm, and their recall of the experience. We provide all materials necessary to use this module, including student worksheet and printable model coordinates. We encourage both high school instructors and professional biochemists to consider similar module using physical models.
-
Computer Science (CS) Frontiers is a 4-module curriculum, 9 weeks each, designed to bring the frontiers of computing to high school girls for exploration and development. Our prior work has showcased the work in developing and piloting our first three modules, Distributed Computing, Artificial Intelligence (AI), and the Internet of Things (IoT). During the summer of 2022, we piloted the completed curricula, including the new Software Engineering module, with 56 high school camp attendees. This poster reports on the newly developed software engineering module, the experiences of 7 teachers and 11 students using the module, and our plans for improving this module prior to its release in formal high school classrooms. Initial survey and interview data indicate that teachers became comfortable with facilitating the open-endedness of the final projects and that students appreciated the connections to socially relevant topics and the ability of their projects to help with real-world problems such as flood prevention and wheelchair accessibility. The CS Frontiers curriculum has been added to course offerings in Tennessee and adoption through the North Carolina Department of Public Instruction is currently underway. Teachers from Tennessee, North Carolina, Massachusetts, and New York have piloted the materials. Together with researchers, we are working to package the course and curricula for widespread adoption as additional support to students as they try out computing courses in their high school pathways. Our aim is to increase the interest and career awareness of CS for high school girls so they may have an equitable footing to choose CS as a potential major or career.more » « less
-
Computational thinking is identified as one of the “essential skills for 21st-Century students.” [1] Studies of CT in school programs are being funded by many organizations, including the United States National Science Foundation. In this paper, we describe “lessons learned” over the first two years of a research program (PREDICTS: Principles and Resources for Educators to Infuse Computational Thinking in the Sciences) with the goal of developing knowledge of how to integrate CT into introductory high school biology and chemistry classes for all students. Using curricular modules developed by program staff, two in biology and two in chemistry, teachers piloting the program engaged students in CT with computational evidence from authentic tools in order to develop understanding of science concepts. Each module, representing about a week of instruction, addresses science ideas in the prescribed course of study for high school programs. Project researchers have collected survey data on teachers’: (1) beliefs about effective science teaching; (2) beliefs about their effectiveness as a science teacher and their students’ ability to learn science, and; (3) content preparedness. In addition, we observed module implementation, collected and analyzed student artifacts, and interviewed teachers at the conclusion of module implementation. Preliminary results indicated some challenges (access to technology, varying levels of experience among students) and cause for optimism (student and teacher engagement in CT and the computational tools used in the modules). Continuing research efforts are described in this paper, along with descriptions of the curricular modules and the use of observations and “CT check-ins” to assess student engagement in, application of, and learning of CT.more » « less
-
null (Ed.)This position paper describes our research project to improve middle school students’ use of security “best-practices” in their day-to-day online activities, while enhancing their fundamental understanding of the underlying security principles and math concepts that drive AI and cybersecurity technologies. The project involves the design and implementation of a time- and teacher-friendly learning module that can be readily integrated into existing middle school math curricula. We plan to deploy this module at a high-needs, rural-identifying middle school in South Carolina that serves underrepresented studentsmore » « less