Abstract. We present a simple method that allows snow depth measurements tobe converted to snow water equivalent (SWE) estimates. These estimates areuseful to individuals interested in water resources, ecological function,and avalanche forecasting. They can also be assimilated into models to helpimprove predictions of total water volumes over large regions. Theconversion of depth to SWE is particularly valuable since snow depthmeasurements are far more numerous than costlier and more complex SWEmeasurements. Our model regresses SWE against snow depth (h), day of wateryear (DOY) and climatological (30-year normal) values for winter (December,January, February) precipitation (PPTWT), and the difference (TD) between meantemperature of the warmest month and mean temperature of the coldest month,producing a power-law relationship. Relying on climatological normals ratherthan weather data for a given year allows our model to be applied atmeasurement sites lacking a weather station. Separate equations are obtainedfor the accumulation and the ablation phases of the snowpack. The model isvalidated against a large database of snow pillow measurements and yields abias in SWE of less than 2 mm and a root-mean-squared error (RMSE) in SWE ofless than 60 mm. The model is additionally validated against two completelyindependent sets of data: one from western North America and one from thenortheastern United States. Finally, the results are compared with three othermodels for bulk density that have varying degrees of complexity and thatwere built in multiple geographic regions. The results show that the modeldescribed in this paper has the best performance for the validation datasets.
more »
« less
Impact of Snow Grain Shape and Black Carbon–Snow Internal Mixing on Snow Optical Properties: Parameterizations for Climate Models
- Award ID(s):
- 1660587
- PAR ID:
- 10068034
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 30
- Issue:
- 24
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 10019 to 10036
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Snow is a vital part of water resources, and sublimation may remove 10%–90% of snowfall from the system. To improve our understanding of the physics that govern sublimation rates, as well as how those rates might change with the climate, we deployed an array of four towers with over 100 instruments from NCAR’s Integrated Surface Flux System from November 2022 to June 2023 in the East River watershed, Colorado, in conjunction with the U.S. Department of Energy’s Surface Atmosphere Integrated Field Laboratory (SAIL) and the National Oceanic and Atmospheric Administration (NOAA)’s Study of Precipitation, the Lower Atmosphere and Surface for Hydrometeorology (SPLASH) campaigns. Mass balance observations, snow pits, particle flux sensors, and terrestrial lidar scans of the evolving snowfield demonstrated how blowing snow influences sublimation rates, which we quantified with latent heat fluxes measured by eddy-covariance systems at heights 1–20 m above the snow surface. Detailed temperature profiles at finer resolutions highlighted the role of the stable boundary layer. Four-stream radiometers indicated the important role of changing albedo in the energy balance and its relationship to water vapor losses. Collectively, these observations span scales from seconds to seasons, from boundary layer turbulence to valley circulation to mesoscale meteorology. We describe the field campaign, highlights in the observations, and outreach and education products we are creating to facilitate cross-disciplinary dialogue and convey relevant findings to those seeking to better understand Colorado River snow and streamflow.more » « less
-
Although it is a historically understudied season, winter is now recognized as a time of biological activity and relevant to the annual cycle of north-temperate lakes. Emerging research points to a future of reduced ice cover duration and changing snow conditions that will impact aquatic ecosystems. The aim of the study was to explore how altered snow and ice conditions, and subsequent changes to under-ice light environment, might impact ecosystem dynamics in a north, temperate bog lake in northern Wisconsin, USA. This dataset resulted from a snow removal experiment that spanned the periods of ice cover on South Sparkling Bog during the winters of 2019, 2020, and 2021. During the winters 2020 and 2021, snow was removed from the surface of South Sparkling Bog using an ARGO ATV with a snow plow attached. The 2019 season served as a reference year, and snow was not removed from the lake. This dataset represents the snow depths, black and white ice thickness, and Secchi depths during the period of ice cover each winter.more » « less
-
Abstract The detailed characterization of snow particles is critical for understanding the snow settling behavior and modeling the ground snow accumulation for various applications such as prevention of avalanches and snowmelt‐caused floods, etc. In this study, we present a snow particle analyzer for simultaneous measurements of various properties of fresh falling snow, including their size, shape, type, and density. The analyzer consists of a digital inline holography module for imaging falling snow particles in a sample volume of 88 cm3and a high‐precision scale to measure the weight of the same particles in a synchronized fashion. The holographic images are processed in real‐time using a machine learning model and post‐processing to determine snow particle size, shape, and type. Such information is used to obtain the estimated volume, which is subsequently correlated with the weight of snow particles to estimate their density. The performance of the analyzer is assessed using monodispersed spherical glass and foam beads, irregular salt crystals, and thin disks with various shapes with known density, which shows <10% density measurement errors. In addition, the analyzer was tested in a number of field deployments under different snow and wind conditions. The system is able to achieve measurements of various snow properties at single particle resolution and statistical robustness. The analyzer was also deployed for 4 hr of operation during a snow event with changing snow and wind conditions, demonstrating its potential for long‐term and real‐time monitoring of the time‐varying snow properties in the field.more » « less
-
Abstract. Snow algae contribute to snowmelt by darkening the surface, reducing its albedo. However, the potential consequences of algae under the surface (such as after a fresh snowfall) on albedo reduction is not known. In this study, we examined the impact of sub-surface snow algae on surface energy absorption. The results indicate energy absorption across all analysed wavelength ranges when snow algae are snow-covered, an effect that was correlated with both cell densities and chlorophyll-a concentrations. These findings suggest that snow algae lower albedo and thus increase snow melt even when snow-covered.more » « less
An official website of the United States government

