Given a linear dynamical system affected by noise, we consider the problem of optimally placing sensors (at design-time) subject to certain budget constraints to minimize the trace of the steady-state error covariance of the Kalman filter. Previous work has shown that this problem is NP-hard in general. In this paper, we impose additional structure by considering systems whose dynamics are given by a stochastic matrix corresponding to an underlying consensus network. In the case when there is a single input at one of the nodes in a tree network, we provide an optimal strategy (computed in polynomial-time) to place the sensors over the network. However, we show that when the network has multiple inputs, the optimal sensor placement problem becomes NP-hard.
more »
« less
On the Complexity and Approximability of Optimal Sensor Selection for Kalman Filtering
Given a linear dynamical system, we consider the problem of selecting (at design-time) an optimal set of sensors (subject to certain budget constraints) to minimize the trace of the steady state error covariance matrix of the Kalman filter. Previous work has shown that this problem is NP-hard for certain classes of systems and sensor costs; in this paper, we show that the problem remains NP-hard even for the special case where the system is stable and all sensor costs are identical. Furthermore, we show the stronger result that there is no constant-factor (polynomial-time) approximation algorithm for this problem. This contrasts with other classes of sensor selection problems studied in the literature, which typically pursue constant-factor approximations by leveraging greedy algorithms and submodularity of the cost function. Here, we provide a specific example showing that greedy algorithms can perform arbitrarily poorly for the problem of design-time sensor selection for Kalman filtering.
more »
« less
- Award ID(s):
- 1635014
- PAR ID:
- 10068255
- Date Published:
- Journal Name:
- 2018 Annual American Control Conference (ACC)
- Page Range / eLocation ID:
- 5049 to 5054
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Supply energy to battery-powered sensor devices by deploying wireless chargers is a promising way to prolong the operation time of wireless sensor networks, and has attracted much attention recently. Existing works focus on maximizing the total received charging power of the network. However, this may face the unbalanced energy allocation problem, which is not beneficial to prolong the operation time of wireless sensor networks. In this paper, we consider the individual energy requirement of each sensor node, and study the problem of minimum charger placement. That is, we focus on finding a strategy for placing wireless chargers from a given candidate location set, such that each sensor nodeβs energy requirement can be met, meanwhile the total number of used chargers can be minimized. We show that the problem to be solved is NP-hard, and present two approximation algorithms which are based on the greedy scheme and relax rounding scheme, respectively. We prove that both of the two algorithms have performance guarantees. Finally, we validate the performance of our algorithms by performing extensive numerical simulations. Simulation results show the effectiveness of our proposed algorithmsmore » « less
-
We study a problem of minimizing routing costs by jointly optimizing caching and routing decisions over an arbitrary network topology. We cast this as an equivalent caching gain maximization problem, and consider both source routing and hop-by-hop routing settings. The respective offline problems are NP-hard. Nevertheless, we show that there exist polynomial time approximation algorithms producing solutions within a constant approximation from the optimal. We also produce distributed, adaptive algorithms with the same approximation guarantees. We simulate our adaptive algorithms over a broad array of different topologies. Our algorithms reduce routing costs by several orders of magnitude compared to prior art, including algorithms optimizing caching under fixed routing.more » « less
-
Aichholzer, Oswin; Wang, Haitao (Ed.)The πβΒ² min-sum k-clustering problem is to partition an input set into clusters C_1,β¦,C_k to minimize β_{i=1}^k β_{p,q β C_i} βp-qββΒ². Although πβΒ² min-sum k-clustering is NP-hard, it is not known whether it is NP-hard to approximate πβΒ² min-sum k-clustering beyond a certain factor. In this paper, we give the first hardness-of-approximation result for the πβΒ² min-sum k-clustering problem. We show that it is NP-hard to approximate the objective to a factor better than 1.056 and moreover, assuming a balanced variant of the Johnson Coverage Hypothesis, it is NP-hard to approximate the objective to a factor better than 1.327. We then complement our hardness result by giving a fast PTAS for πβΒ² min-sum k-clustering. Specifically, our algorithm runs in time O(n^{1+o(1)}dβ 2^{(k/Ξ΅)^O(1)}), which is the first nearly linear time algorithm for this problem. We also consider a learning-augmented setting, where the algorithm has access to an oracle that outputs a label i β [k] for input point, thereby implicitly partitioning the input dataset into k clusters that induce an approximately optimal solution, up to some amount of adversarial error Ξ± β [0,1/2). We give a polynomial-time algorithm that outputs a (1+Ξ³Ξ±)/(1-Ξ±)Β²-approximation to πβΒ² min-sum k-clustering, for a fixed constant Ξ³ > 0.more » « less
-
Current flow closeness centrality (CFCC) has a better discriminating ability than the ordinary closeness centrality based on shortest paths. In this paper, we extend this notion to a group of vertices in a weighted graph, and then study the problem of finding a subset S of k vertices to maximize its CFCC C(S), both theoretically and experimentally. We show that the problem is NP-hard, but propose two greedy algorithms for minimizing the reciprocal of C(S) with provable guarantees using the monotoncity and supermodularity. The first is a deterministic algorithm with an approximation factor (1βkkβ1β 1e) and cubic running time; while the second is a randomized algorithm with a (1βkkβ1β 1eβΟ΅)-approximation and nearly-linear running time for any Ο΅>0. Extensive experiments on model and real networks demonstrate that our algorithms are effective and efficient, with the second algorithm being scalable to massive networks with more than a million vertices.more » « less
An official website of the United States government

