skip to main content


Title: Sensitive and robust electroactive polymer tactile pressure sensors and shape-morphing actuation for robotic grippers
Current robotic sensing is mainly visual, which is useful up until the point of contact. To understand how an object is being gripped, tactile feedback is needed. Human grasp is gentle yet firm, with integrated tactile touch feedback. Ras Labs makes Synthetic Muscle™, which is a class of electroactive polymer (EAP) based materials and actuators that sense pressure from gentle touch to high impact, controllably contract and expand at low voltage (battery levels), and attenuate force. The development of this technology towards sensing has provided for fingertip-like sensors that were able to detect very light pressures down to 0.01 N and even 0.005 N, with a wide pressure range to 25 N and more and with high linearity. By using these soft yet robust Tactile Fingertip™ sensors, immediate feedback was generated at the first point of contact. Because these elastomeric pads provided a soft compliant interface, the first point of contact did not apply excessive force, allowing for gentle object handling and control of the force applied to the object. The Tactile Fingertip could also detect a change in pressure location on its surface, i.e., directional glide provided real time feedback, making it possible to detect and prevent slippage by then adjusting the grip strength. Machine learning (ML) and artificial intelligence (AI) were integrated into these sensors for object identification along with the determination of good grip (position, grip force, no slip, no wobble) for pick-and-place and other applications. Synthetic Muscle™ is also being retrofitted as actuators into a human hand-like biomimetic gripper. The combination of EAP shape-morphing and sensing promises the potential for robotic grippers with human hand-like control and tactile sensing. This is expected to advance robotics, whether it is for agriculture, medical surgery, therapeutic or personal care, or in extreme environments where humans cannot enter, including with contagions that have no cure, as well as for collaborative robotics to allow humans and robots to intuitively work safely and effectively together.  more » « less
Award ID(s):
1927023
NSF-PAR ID:
10397161
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Madden, John D.; Anderson, Iain A.; Shea, Herbert R.
Date Published:
Journal Name:
Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV
Volume:
12042
Issue:
01
Page Range / eLocation ID:
1-15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Madden, John D. ; Anderson, Iain A. ; Shea, Herbert R. (Ed.)
    Ras Labs makes Synthetic Muscle™, which is a class of electroactive polymer (EAP) based materials and actuators that sense pressure (gentle touch to high impact), controllably contract and expand at low voltage (1.5 V to 50 V, including use of batteries), and attenuate force. We are in the robotics era, but robots do have their challenges. Currently, robotic sensing is mainly visual, which is useful up until the point of contact. To understand how an object is being gripped, tactile feedback is needed. For handling fragile objects, if the grip is too tight, breakage occurs, and if the grip is too loose, the object will slip out of the grasp, also leading to breakage. Rigid robotic grippers using a visual feedback loop can struggle to determine the exact point and quality of contact. Robotic grippers can also get a stuttering effect in the visual feedback loop. By using soft Synthetic Muscle™ based EAP pads as the sensors, immediate feedback was generated at the first point of contact. Because these pads provided a soft, compliant interface, the first point of contact did not apply excessive force, allowing the force applied to the object to be controlled. The EAP sensor could also detect a change in pressure location on its surface, making it possible to detect and prevent slippage by then adjusting the grip strength. In other words, directional glide provided feedback for the presence of possible slippage to then be able to control a slightly tighter grip, without stutter, due to both the feedback and the soft gentleness of the fingertip-like EAP pads themselves. The soft nature of the EAP fingertip pad also naturally held the gripped object, improving the gripping quality over rigid grippers without an increase in applied force. Analogous to finger-like tactile touch, the EAPs with appropriate coatings and electronics were positioned as pressure sensors in the fingertip or end effector regions of robotic grippers. This development of using Synthetic Muscle™ based EAPs as soft sensors provided for sensors that feel like the pads of human fingertips. Basic pressure position and magnitude tests have been successful, with pressure sensitivity down to 0.05 N. Most automation and robots are very strong, very fast, and usually need to be partitioned away from humans for safety reasons. For many repetitive tasks that humans do with delicate or fragile objects, it would be beneficial to use robotics; whether it is for agriculture, medical surgery, therapeutic or personal care, or in extreme environments where humans cannot enter, including with contagions that have no cure. Synthetic Muscle™ was also retrofitted as actuator systems into off-the-shelf robotic grippers and is being considered in novel biomimetic gripper designs, operating at low voltages (less than 50 V). This offers biomimetic movement by contracting like human muscles, but also exceeds natural biological capabilities by expanding under reversed electric polarity. Human grasp is gentle yet firm, with tactile touch feedback. In conjunction with shape-morphing abilities, these EAPs also are being explored to intrinsically sense pressure due to the correlation between mechanical force applied to the EAP and its electronic signature. The robotic field is experiencing phenomenal growth in this fourth phase of the industrial revolution, the robotics era. The combination of Ras Labs’ EAP shape-morphing and sensing features promises the potential for robotic grippers with human hand-like control and tactile sensing. This work is expected to advance both robotics and prosthetics, particularly for collaborative robotics to allow humans and robots to intuitively work safely and effectively together. 
    more » « less
  2. Bar-Cohen, Yoseph ; Anderson, Iain A. ; Shea, Herbert R. (Ed.)
    Ras Labs makes Synthetic Muscle™, which is a class of electroactive polymer (EAP) based materials and actuators that controllably contract and expand at low voltage (1.5 V to 50 V, including use of batteries), potentially sense pressure (gentle touch to high impact), and attenuate force. This offers biomimetic movement by contracting similar to human muscles, but also exceeds natural biological capabilities by expanding under reversed electric polarity. These EAPs are affordable and robust. They have been tested in many harsh environments, including extreme temperatures, high pressure underwater environments, and in space on the International Space Station. Potential load bearing applications are feasible, with significant mechanical strength when tested in compression. Selected EAP samples were tested and survived 3,000,000 cycles at 4 Hz from 5 psi to 30 psi, followed by a 50-psi compression. Human grasp is gentle yet firm, with tactile touch feedback. In conjunction with shape-morphing abilities, these EAPs also are being explored to intrinsically sense pressure due to the correlation between mechanical force applied to the EAP and its electronic signature. We are continuing to advance EAP technology and apply this technology towards robotic grippers. The robotic field is experiencing phenomenal growth in this fourth phase of the industrial revolution, the robotics era. The combination of Ras Labs’ EAP shape-morphing and sensing features promises the potential for robotic grippers with human hand-like control and tactile sensing. This work is expected to advance both robotics and prosthetics, particularly for collaborative robotics to allow humans and robots to intuitively work safely and effectively together. 
    more » « less
  3. Abstract

    Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long‐term stability and hysteresis‐free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed‐loop feedback control of soft robots, machines, and haptic devices.

     
    more » « less
  4. We describe a single fingertip-mounted sensing system for robot manipulation that provides proximity (pre-touch), contact detection (touch), and force sensing (post-touch). The sensor system consists of optical time-of-flight range measurement modules covered in a clear elastomer. Because the elastomer is clear, the sensor can detect and range nearby objects, as well as measure deformations caused by objects that are in contact with the sensor and thereby estimate the applied force. We examine how this sensor design can be improved with respect to invariance to object reflectivity, signal-to-noise ratio, and continuous operation when switching between the distance and force measurement regimes. By harnessing time-of-flight technology and optimizing the elastomer-air boundary to control the emitted light's path, we develop a sensor that is able to seamlessly transition between measuring distances of up to 50 mm and contact forces of up to 10 newtons. We demonstrate that our sensor improves manipulation accuracy in a block unstacking task. Thorough instructions for manufacturing the sensor from inexpensive, commercially available components are provided, as well as all relevant hardware design files and software sources. 
    more » « less
  5. During in-hand manipulation, robots must be able to continuously estimate the pose of the object in order to generate appropriate control actions. The performance of algorithms for pose estimation hinges on the robot's sensors being able to detect discriminative geometric object features, but previous sensing modalities are unable to make such measurements robustly. The robot's fingers can occlude the view of environment- or robot-mounted image sensors, and tactile sensors can only measure at the local areas of contact. Motivated by fingertip-embedded proximity sensors' robustness to occlusion and ability to measure beyond the local areas of contact, we present the first evaluation of proximity sensor based pose estimation for in-hand manipulation. We develop a novel two-fingered hand with fingertip-embedded optical time-of-flight proximity sensors as a testbed for pose estimation during planar in-hand manipulation. Here, the in-hand manipulation task consists of the robot moving a cylindrical object from one end of its workspace to the other. We demonstrate, with statistical significance, that proximity-sensor based pose estimation via particle filtering during in-hand manipulation: a) exhibits 50% lower average pose error than a tactile-sensor based baseline; b) empowers a model predictive controller to achieve 30% lower final positioning error compared to when using tactile-sensor based pose estimates. 
    more » « less