skip to main content


Title: Towards Navigation Safety for Autonomous Cars
Promising new technology has recently emerged to increase the level of safety and autonomy in driving, including lane and distance keeping assist systems, automatic braking systems, and even highway auto-drive systems. Each of these technologies brings cars closer to the ultimate goal of fully autonomous operation. While it is still unclear, if and when safe, driverless cares will be released on the mass market, a comparison with the development of aircraft autopilot systems can provide valuable insight. This review article contains several Additional Resources at the end, including key references to support its findings. The article investigates a path towards ensuring safety for "self-driving" or "autonomous" cars by leveraging prior work in aviation. It focuses on navigation, or localization, which is a key aspect of automated operation.  more » « less
Award ID(s):
1637899
NSF-PAR ID:
10070277
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Inside GNSS
ISSN:
2329-2970
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advances in perception for self-driving cars have accel- erated in recent years due to the availability of large-scale datasets, typically collected at specific locations and under nice weather conditions. Yet, to achieve the high safety re- quirement, these perceptual systems must operate robustly under a wide variety of weather conditions including snow and rain. In this paper, we present a new dataset to enable robust autonomous driving via a novel data collection pro- cess — data is repeatedly recorded along a 15 km route un- der diverse scene (urban, highway, rural, campus), weather (snow, rain, sun), time (day/night), and traffic conditions (pedestrians, cyclists and cars). The dataset includes im- ages and point clouds from cameras and LiDAR sensors, along with high-precision GPS/INS to establish correspon- dence across routes. The dataset includes road and object annotations using amodal masks to capture partial occlu- sions and 3D bounding boxes. We demonstrate the unique- ness of this dataset by analyzing the performance of base- lines in amodal segmentation of road and objects, depth estimation, and 3D object detection. The repeated routes opens new research directions in object discovery, contin- ual learning, and anomaly detection. Link to Ithaca365: https://ithaca365.mae.cornell.edu/ 
    more » « less
  2. When machine learning (ML) algorithms are used in mission-critical domains (e.g., self-driving cars, cyber security) or life-critical domains (e.g., surgical robotics), it is often important to ensure that the learned models satisfy some high-level correctness requirements — these requirements can be instantiated in particular domains via constraints like safety (e.g., a robot arm should not come within five meters of any human operator during any phase of performing an autonomous operation) or liveness (e.g., a car should eventually cross a 4-way intersection). Such constraints can be formally described in propositional logic, first order logic or temporal logics such as Probabilistic Computation Tree Logic (PCTL)[31]. For example, in a lane change controller we can enforce the following PCTL safety property on seeing a slow-moving truck in front: Pr>0.99[F(changedLane or reducedSpeed)] , where F is the eventually operator in PCTL logic — this property states that the car should eventually change lanes or reduce speed with high probability (greater than 0.99). Trusted Machine Learning (TML) refers to a learning methodology that ensures that the specified properties are satisfied. 
    more » « less
  3. Self-driving cars, or Autonomous Vehicles (AVs), are increasingly becoming an integral part of our daily life. About 50 corporations are actively working on AVs, including large companies such as Google, Ford, and Intel. Some AVs are already operating on public roads, with at least one unfortunate fatality recently on record. As a result, understanding bugs in AVs is critical for ensuring their security, safety, robustness, and correctness. While previous studies have focused on a variety of domains (e.g., numerical software; machine learning; and error-handling, concurrency, and performance bugs) to investigate bug characteristics, AVs have not been studied in a similar manner. Recently, two software systems for AVs, Baidu Apollo and Autoware, have emerged as frontrunners in the opensource community and have been used by large companies and governments (e.g., Lincoln, Volvo, Ford, Intel, Hitachi, LG, and the US Department of Transportation). From these two leading AV software systems, this paper describes our investigation of 16,851 commits and 499 AV bugs and introduces our classification of those bugs into 13 root causes, 20 bug symptoms, and 18 categories of software components those bugs often affect. We identify 16 major findings from our study and draw broader lessons from them to guide the research community towards future directions in software bug detection, localization, and repair. 
    more » « less
  4. Deep-learning driven safety-critical autonomous systems, such as self-driving cars, must be able to detect situations where its trained model is not able to make a trustworthy prediction. This ability to determine the novelty of a new input with respect to a trained model is critical for such systems because novel inputs due to changes in the environment, adversarial attacks, or even unintentional noise can potentially lead to erroneous, perhaps life-threatening decisions. This paper proposes a learning framework that leverages information learned by the prediction model in a task-aware manner to detect novel scenarios. We use network saliency to provide the learning architecture with knowledge of the input areas that are most relevant to the decision-making and learn an association between the saliency map and the predicted output to determine the novelty of the input. We demonstrate the efficacy of this method through experiments on real-world driving datasets as well as through driving scenarios in our in-house indoor driving environment where the novel image can be sampled from another similar driving dataset with similar features or from adversarial attacked images from the training dataset. We find that our method is able to systematically detect novel inputs and quantify the deviation from the target prediction through this task-aware approach. 
    more » « less
  5. null (Ed.)
    The advent of pervasive autonomous systems such as self-driving cars and drones has raised questions about their safety and trustworthiness. This is particularly relevant in the event of on-board subsystem errors or failures. In this research, we show how encoded Extended Kalman Filter can be used to detect anomalous behaviors of critical components of nonlinear autonomous systems: sensors, actuators, state estimation algorithms and control software. As opposed to prior work that is limited to linear systems or requires the use of cumbersome machine learned checks with fixed detection thresholds, the proposed approach necessitates the use of time-varying checks with dynamically adaptive thresholds. The method is lightweight in comparison to existing methods (does not rely on machine learning paradigms) and achieves high coverage as well as low detection latency of errors. A quadcopter and an automotive steer-by-wire system are used as test vehicles for the research and simulation and hardware results indicate the overhead, coverage and error detection latency benefits of the proposed approach. 
    more » « less