skip to main content


Title: Task-Aware Novelty Detection for Visual-based Deep Learning in Autonomous Systems
Deep-learning driven safety-critical autonomous systems, such as self-driving cars, must be able to detect situations where its trained model is not able to make a trustworthy prediction. This ability to determine the novelty of a new input with respect to a trained model is critical for such systems because novel inputs due to changes in the environment, adversarial attacks, or even unintentional noise can potentially lead to erroneous, perhaps life-threatening decisions. This paper proposes a learning framework that leverages information learned by the prediction model in a task-aware manner to detect novel scenarios. We use network saliency to provide the learning architecture with knowledge of the input areas that are most relevant to the decision-making and learn an association between the saliency map and the predicted output to determine the novelty of the input. We demonstrate the efficacy of this method through experiments on real-world driving datasets as well as through driving scenarios in our in-house indoor driving environment where the novel image can be sampled from another similar driving dataset with similar features or from adversarial attacked images from the training dataset. We find that our method is able to systematically detect novel inputs and quantify the deviation from the target prediction through this task-aware approach.  more » « less
Award ID(s):
1715154 1521523 1763399
NSF-PAR ID:
10194719
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Robotics and Automation (ICRA)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Driving safety is a top priority for autonomous vehicles. Orthogonal to prior work handling accident-prone traffic events by algorithm designs at the policy level, we investigate a Closed-loop Adversarial Training (CAT) framework for safe end-to-end driving in this paper through the lens of environment augmentation. CAT aims to continuously improve the safety of driving agents by training the agent on safety-critical scenarios that are dynamically generated over time. A novel resampling technique is developed to turn log-replay real-world driving scenarios into safety-critical ones via probabilistic factorization, where the adversarial traffic generation is modeled as the multiplication of standard motion prediction sub-problems. Consequently, CAT can launch more efficient physical attacks compared to existing safety-critical scenario generation methods and yields a significantly less computational cost in the iterative learning pipeline. We incorporate CAT into the MetaDrive simulator and validate our approach on hundreds of driving scenarios imported from real-world driving datasets. Experimental results demonstrate that CAT can effectively generate adversarial scenarios countering the agent being trained. After training, the agent can achieve superior driving safety in both log-replay and safety-critical traffic scenarios on the held- out test set. Code and data are available at https://metadriverse.github.io/cat. 
    more » « less
  2. Purpose: To determine if saliency maps in radiology artificial intelligence (AI) are vulnerable to subtle perturbations of the input, which could potentially lead to misleading interpretations, using Prediction-Saliency Correlation (PSC) for evaluating the sensitivity and robustness of saliency methods. Materials and Methods: In this retrospective study, locally trained deep learning models and a research prototype provided by a commercial vender were systematically evaluated on 191,229 chest radiographs from the CheXpert dataset(1,2) and 7,022 MRI images of human brain tumor classification dataset(3). Two radiologists performed a reader study on 270 chest radiographs pairs. A model-agnostic approach for computing the PSC coefficient was used to evaluate the sensitivity and robustness of seven commonly used saliency methods. Results: Leveraging locally trained model parameters, we revealed the saliency methods’ low sensitivity (maximum PSC = 0.25, 95% CI: 0.12, 0.38) and weak robustness (maximum PSC = 0.12, 95% CI: 0.0, 0.25) on the CheXpert dataset. Without model specifics, we also showed that the saliency maps from a commercial prototype could be irrelevant to the model output (area under the receiver operating characteristic curve dropped by 8.6% without affecting the saliency map). The human observer studies confirmed that is difficult for experts to identify the perturbed images, who had less than 44.8% correctness. Conclusion: Popular saliency methods scored low PSC values on the two datasets of perturbed chest radiographs, indicating weak sensitivity and robustness. The proposed PSC metric provides a valuable quantification tool for validating the trustworthiness of medical AI explainability. Abbreviations: AI = artificial intelligence, PSC = prediction-saliency correlation, AUC = area under the receiver operating characteristic curve, SSIM = structural similarity index measure. Summary: Systematic evaluation of saliency methods through subtle perturbations in chest radiographs and brain MRI images demonstrated low sensitivity and robustness of those methods, warranting caution when using saliency methods that may misrepresent changes in AI model prediction. 
    more » « less
  3. Identifying persuasive speakers in an adversarial environment is a critical task. In a national election, politicians would like to have persuasive speakers campaign on their behalf. When a company faces adverse publicity, they would like to engage persuasive advocates for their position in the presence of adversaries who are critical of them. Debates represent a common platform for these forms of adversarial persuasion. This paper solves two problems: the Debate Outcome Prediction (DOP) problem predicts who wins a debate while the Intensity of Persuasion Prediction (IPP) problem predicts the change in the number of votes before and after a speaker speaks. Though DOP has been previously studied, we are the first to study IPP. Past studies on DOP fail to leverage two important aspects of multimodal data: 1) multiple modalities are often semantically aligned, and 2) different modalities may provide diverse information for prediction. Our M2P2 (Multimodal Persuasion Prediction) framework is the first to use multimodal (acoustic, visual, language) data to solve the IPP problem. To leverage the alignment of different modalities while maintaining the diversity of the cues they provide, M2P2 devises a novel adaptive fusion learning framework which fuses embeddings obtained from two modules -- an alignment module that extracts shared information between modalities and a heterogeneity module that learns the weights of different modalities with guidance from three separately trained unimodal reference models. We test M2P2 on the popular IQ2US dataset designed for DOP. We also introduce a new dataset called QPS (from Qipashuo, a popular Chinese debate TV show) for IPP - we plan to release this dataset when the paper is published. M2P2 significantly outperforms 3 recent baselines on both datasets. 
    more » « less
  4. Many real-world scenarios in which DNN-based recognition systems are deployed have inherently fine-grained attributes (e.g., bird-species recognition, medical image classification). In addition to achieving reliable accuracy, a critical subtask for these models is to detect Out-of-distribution (OOD) inputs. Given the nature of the deployment environment, one may expect such OOD inputs to also be fine-grained w.r.t. the known classes (e.g., a novel bird species), which are thus extremely difficult to identify. Unfortunately, OOD detection in fine-grained scenarios remains largely underexplored. In this work, we aim to fill this gap by first carefully constructing four large-scale fine-grained test environments, in which existing methods are shown to have difficulties. Particularly, we find that even explicitly incorporating a diverse set of auxiliary outlier data during training does not provide sufficient coverage over the broad region where fine-grained OOD samples locate. We then propose Mixture Outlier Exposure (MixOE), which mixes ID data and training outliers to expand the coverage of different OOD granularities, and trains the model such that the prediction confidence linearly decays as the input transitions from ID to OOD. Extensive experiments and analyses demonstrate the effectiveness of MixOE for building up OOD detector in fine-grained environments. The code is available at https://github.com/zjysteven/MixOE. 
    more » « less
  5. Introduction: Computed tomography perfusion (CTP) imaging requires injection of an intravenous contrast agent and increased exposure to ionizing radiation. This process can be lengthy, costly, and potentially dangerous to patients, especially in emergency settings. We propose MAGIC, a multitask, generative adversarial network-based deep learning model to synthesize an entire CTP series from only a non-contrasted CT (NCCT) input. Materials and Methods: NCCT and CTP series were retrospectively retrieved from 493 patients at UF Health with IRB approval. The data were deidentified and all images were resized to 256x256 pixels. The collected perfusion data were analyzed using the RapidAI CT Perfusion analysis software (iSchemaView, Inc. CA) to generate each CTP map. For each subject, 10 CTP slices were selected. Each slice was paired with one NCCT slice at the same location and two NCCT slices at a predefined vertical offset, resulting in 4.3K CTP images and 12.9K NCCT images used for training. The incorporation of a spatial offset into the NCCT input allows MAGIC to more accurately synthesize cerebral perfusive structures, increasing the quality of the generated images. The studies included a variety of indications, including healthy tissue, mild infarction, and severe infarction. The proposed MAGIC model incorporates a novel multitask architecture, allowing for the simultaneous synthesis of four CTP modalities: mean transit time (MTT), cerebral blood flow (CBF), cerebral blood volume (CBV), and time to peak (TTP). We propose a novel Physicians-in-the-loop module in the model's architecture, acting as a tunable layer that allows physicians to manually adjust the amount of anatomic detail present in the synthesized CTP series. Additionally, we propose two novel loss terms: multi-modal connectivity loss and extrema loss. The multi-modal connectivity loss leverages the multi-task nature to assert that the mathematical relationship between MTT, CBF, and CBV is satisfied. The extrema loss aids in learning regions of elevated and decreased activity in each modality, allowing for MAGIC to accurately learn the characteristics of diagnostic regions of interest. Corresponding NCCT and CTP slices were paired along the vertical axis. The model was trained for 100 epochs on a NVIDIA TITAN X GPU. Results and Discussion: The MAGIC model’s performance was evaluated on a sample of 40 patients from the UF Health dataset. Across all CTP modalities, MAGIC was able to accurately produce images with high structural agreement between the entire synthesized and clinical perfusion images (SSIMmean=0.801 , UQImean=0.926). MAGIC was able to synthesize CTP images to accurately characterize cerebral circulatory structures and identify regions of infarct tissue, as shown in Figure 1. A blind binary evaluation was conducted to assess the presence of cerebral infarction in both the synthesized and clinical perfusion images, resulting in the synthesized images correctly predicting the presence of cerebral infarction with 87.5% accuracy. Conclusions: We proposed a MAGIC model whose novel deep learning structures and loss terms enable high-quality synthesis of CTP maps and characterization of circulatory structures solely from NCCT images, potentially eliminating the requirement for the injection of an intravenous contrast agent and elevated radiation exposure during perfusion imaging. This makes MAGIC a beneficial tool in a clinical scenario increasing the overall safety, accessibility, and efficiency of cerebral perfusion and facilitating better patient outcomes. Acknowledgements: This work was partially supported by the National Science Foundation, IIS-1908299 III: Small: Modeling Multi-Level Connectivity of Brain Dynamics + REU Supplement, to the University of Florida. 
    more » « less