skip to main content


Title: Implementing the CURE: Combining Wet-Lab Protein Biochemistry with Computational Analysis to Provide Gains in Student Learning in the Biochemistry Teaching Lab
Most undergraduates studying biochemistry and molecular biology get their broadest exposure to wet-lab techniques in protein and nucleic acid chemistry (and, increasingly, computer/visualization) in their upper-level laboratory courses. These tend to be juniors and seniors with well-defined career goals. Some of these students will have already have a research background in a traditional one-to-one (or one-to-few) research mentoring setting, for example a summer research program. This approach has proved effective at increasing student learning and persistence in the sciences. At the same time, extended full-time PI-directed research is limited in the number of students served, and can even present a barrier. To broaden the impact of teaching through research, many practitioners have adopted a CURE, or Course-based Undergraduate Research Experience, approach.This presentation reports on “BASIL” (Biochemical Authentic Scientific Inquiry Laboratory), a team of faculty who have worked to bring computational and wet-lab protein science to the biochemistry teaching lab. Together, we have developed a protein biochemistry CURE to determine enzymatic function of proteins of unknown activity. This work leverages the results of the Protein Structure Initiative, a fifteen-year NIH-funded effort which concluded in 2015 with the publication and distribution of more than 5000 previously uncharacterized proteins. The great majority of these are “orphans,” with high quality structures and pre-cloned expression plasmids available, but no research on their enzymatic function or role in native organisms. The BASIL consortium of undergraduate biochemistry faculty and students seeks to identify functional properties of a subset of these uncharacterized proteins, seeking to unify structure and function relationships. Currently, implementable modules are available for faculty who wish to adopt them, and expected student results will be presented.Support or Funding InformationSupported by NSF IUSE 1709278This abstract is from the Experimental Biology 2018 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.  more » « less
Award ID(s):
1709278
NSF-PAR ID:
10071714
Author(s) / Creator(s):
Date Published:
Journal Name:
The FASEB journal
Volume:
32
Issue:
1
ISSN:
0892-6638
Page Range / eLocation ID:
supplement
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Campus shutdowns during the SARS-CoV2 pandemic posed unique challenges to faculty and students engaged in laboratory courses. Formerly hands-on experiments had to be quickly pivoted to emergency remote learning. While some resources existed prior to this period, many currently available online modules and/or simulations focus on a single technique. The Biochemistry Authentic Scientific Inquiry Lab (BASIL) curriculum has, for several years, provided a robust, linked, holistic inquiry experience that allows students to make connections between multiple techniques, both computational in nature as well as wet-lab based. As a Course-based Undergraduate Research Experience (CURE), this flexible, module-based curriculum allows students to generate original hypotheses based on analysis of proteins of unknown function. We have taught this curriculum as the upper-level laboratory course on our campuses and were obliged to transition to remote instruction at various points in the course sequence. We report on the experiences of faculty and students over the transition period in this course. Additionally, we report as a case study results of one of our campus’ ongoing discipline-based education research (DBER) on the BASIL curriculum prior to and during remote delivery. 
    more » « less
  2. We are seeking to incorporate authentic inquiry into an undergraduate biochemistry lab course. Students on six campuses are combining computational (“in silico”) and wet lab (“in vitro”) techniques as they characterize proteins whose three dimensional structures are known but to which functions have not been previously ascribed. The in silico modules include protein visualization with PyMOL, structural alignment using Dali and ProMOL, sequence exploration with BLAST and Pfam, and ligand docking with PyRX and Autodock Vina. The goal is to predict the function of the protein and to identify the most promising substrates for the active sites. In the wet lab, students express and purify their target proteins, then conduct enzyme kinetics with substrates selected from their docking studies. Their learning as students and their growth as scientists is being assessed in terms of research methods, visualization, biological context, and mechanism of protein function. The lab course is an extension of successful undergraduate research efforts at RIT and Dowling College. The modules that are developed will be disseminated to the scientific community via a web site (promol.org), including both protocols and captioned video instruction in the techniques involved. Over the course of the project, we will also be following changes in faculty and teaching assistant competence in two areas: effective teaching with structural biology tools and the development of skills in the area of measuring learning gains by students. As we conduct the lab on these different campuses, we will also focus on advantages of our approach and barriers to implementation that exist on each campus, from the level of student acceptance and faculty training, to resources that are needed to changes in the culture at the departmental and institutional levels. As we analyze the feasibility of this approach on other campuses, we will seek input from other potential adopters about their level of interest and the barriers that they anticipate on their campuses. 
    more » « less
  3. Responding to the need to teach remotely due to COVID-19, we used readily available computational approaches (and developed associated tutorials (https://mdh-cures-community.squarespace.com/virtual-cures-and-ures)) to teach virtual Course-Based Undergraduate Research Experience (CURE) laboratories that fulfil generally accepted main components of CUREs or Undergraduate Research Experiences (UREs): Scientific Background, Hypothesis Development, Proposal, Experiments, Teamwork, Data Analysis, Conclusions, and Presentation1. We then developed and taught remotely, in three phases, protein-centric CURE activities that are adaptable to virtually any protein, emphasizing contributions of noncovalent interactions to structure, binding and catalysis (an ASBMB learning framework2 foundational concept). The courses had five learning goals (unchanged in the virtual format),focused on i) use of primary literature and bioinformatics, ii) the roles of non-covalent interactions, iii) keeping accurate laboratory notebooks, iv) hypothesis development and research proposal writing, and, v) presenting the project and drawing evidence based conclusions The first phase, Developing a Research Proposal, contains three modules, and develops hallmarks of a good student-developed hypothesis using available literature (PubMed3) and preliminary observations obtained using bioinformatics, Module 1: Using Primary Literature and Data Bases (Protein Data Base4, Blast5 and Clustal Omega6), Module 2: Molecular Visualization (PyMol7 and Chimera8), culminating in a research proposal (Module 3). Provided rubrics guide student expectations. In the second phase, Preparing the Proteins, students prepared necessary proteins and mutants using Module 4: Creating and Validating Models, which leads users through creating mutants with PyMol, homology modeling with Phyre29 or Missense10, energy minimization using RefineD11 or ModRefiner12, and structure validation using MolProbity13. In the third phase, Computational Experimental Approaches to Explore the Questions developed from the Hypothesis, students selected appropriate tools to perform their experiments, chosen from computational techniques suitable for a CURE laboratory class taught remotely. Questions, paired with computational approaches were selected from Modules 5: Exploring Titratable Groups in a Protein using H++14, 6: Exploring Small Molecule Ligand Binding (with SwissDock15), 7: Exploring Protein-Protein Interaction (with HawkDock16), 8: Detecting and Exploring Potential Binding Sites on a Protein (with POCASA17 and SwissDock), and 9: Structure-Activity Relationships of Ligand Binding & Drug Design (with SwissDock, Open Eye18 or the Molecular Operating Environment (MOE)19). All involve freely available computational approaches on publicly accessible web-based servers around the world (with the exception of MOE). Original literature/Journal club activities on approaches helped students suggest tie-ins to wet lab experiments they could conduct in the future to complement their computational approaches. This approach allowed us to continue using high impact CURE teaching, without changing our course learning goals. Quantitative data (including replicates) was collected and analyzed during regular class periods. Students developed evidence-based conclusions and related them to their research questions and hypotheses. Projects culminated in a presentation where faculty feedback was facilitated with the Virtual Presentation platform from QUBES20 These computational approaches are readily adaptable for topics accessible for first to senior year classes and individual research projects (UREs). We used them in both partial and full semester CUREs in various institutional settings. We believe this format can benefit faculty and students from a wide variety of teaching institutions under conditions where remote teaching is necessary. 
    more » « less
  4. Students at the Rochester Institute of Technology and Dowling College used bioinformatics software, which they had helped develop, to predict the function of protein structures whose functions had not been assigned or confirmed. Over the course of time, they incorporated other bioinformatics tools and moved the project to the wet lab, where they sought to confirm their in silico predictions with in vitro assays. In this process, we saw so much personal and professional growth among our students that we chose to implement their approach in an undergraduate biochemistry teaching lab, which we call BASIL, for Biochemistry Authentic Scientific Inquiry Lab. This curriculum has now been implemented by thirteen faculty members on eight campuses, and we look forward to a long-range exploration of BASIL’s impact on the students who enroll in courses that use the BASIL curriculum. 
    more » « less
  5. Students at the Rochester Institute of Technology and Dowling College used bioinformatics software, which they had helped develop, to predict the function of protein structures whose functions had not been assigned or confirmed. Over the course of time, they incorporated other bioinformatics tools and moved the project to the wet lab, where they sought to confirm their in silico predictions with in vitro assays. In this process, we saw so much personal and professional growth among our students that we chose to implement their approach in an undergraduate biochemistry teaching lab, which we call BASIL, for Biochemistry Authentic Scientific Inquiry Lab. This curriculum has now been implemented by thirteen faculty members on eight campuses, and we look forward to a long-range exploration of BASIL’s impact on the students who enroll in courses that use the BASIL curriculum. 
    more » « less