skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contact-Resistive Sensing of Touch and Airflow Using a Rat Whisker
Rats rely heavily on tactile information from their whiskers to acquire information about their surroundings. A whisker has no sensors along its length. Instead, mechanical deformation of the whisker is sensed via receptors at its base. The present study introduces a micro-sensor developed specifically to imitate the sensing of biological rat whiskers. The sensor responds to bending moments resulting from touch and/or airflow in two axes. The sensor was designed based on analytical models from cantilever beam theory, and the models were validated with finite-element analysis. Sensors were then fabricated using micro-milled molds and integrated into an Arduino-based circuit for simple signal acquisition. The present work begins to develop the technology to allow investigation of important engineering aspects of the rat vibrissal system at 1x scale. In addition to its potential use in novel engineering applications, the sensor could aid neuroscientists in their understanding of the rat vibrissal-trigeminal pathway.  more » « less
Award ID(s):
1734981
PAR ID:
10073514
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ... IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics
ISSN:
2155-1774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work presents the design, fabrication, and characterization of an airflow sensor inspired by the whiskers of animals. The body of the whisker was replaced with a fin structure in order to increase the air resistance. The fin was suspended by a micro-fabricated spring system at the bottom. A permanent magnet was attached beneath the spring, and the motion of fin was captured by a readily accessible and low cost 3D magnetic sensor located below the magnet. The sensor system was modeled in terms of the dimension parameters of fin and the spring stiffness, which were optimized to improve the performance of the sensor. The system response was then characterized using a commercial wind tunnel and the results were used for sensor calibration. The sensor was integrated into a micro aerial vehicle (MAV) and demonstrated the capability of capturing the velocity of the MAV by sensing the relative airflow during flight. 
    more » « less
  2. null (Ed.)
    This work presents the design, modeling, and fabrication of a whisker-like sensor capable of measuring the whisker's angular displacement as well as the applied moments at the base of the whisker. The sensor takes advantage of readily accessible and low-cost 3D magnetic sensors to transduce whisker deflections, and a planar serpentine spring structure at the whisker base is used to provide a mechanical suspension for the whisker to rotate. The sensor prototype was characterized, calibrated, and compared with analytical models of the spring system and the magnetic field. The prototype showed a moment sensing range of 1.1N·mm when deflected up to 19.7°. The sensitivity of the sensor was 0.38°/LSB for the angular displacement sensing, and 0.021 Nmm/LSB for the moment sensing. A fully integrated system is demonstrated to display real-time information from the whisker on a graphical interface. 
    more » « less
  3. This work presents the design, modeling, and fabrication of a whisker-like sensor capable of measuring the whisker’s angular displacement as well as the applied moments at the base of the whisker. The sensor takes advantage of readily accessible and low-cost 3D magnetic sensors to transduce whisker deflections, and a planar serpentine spring structure at the whisker base is used to provide a mechanical suspension for the whisker to rotate. The sensor prototype was characterized, calibrated, and compared with analytical models of the spring system and the magnetic field. The prototype showed a moment sensing range of 1.1Nmm when deflected up to 19:7. The sensitivity of the sensor was 0:38/LSB for the angular displacement sensing, and 0:021Nmm/LSB for the moment sensing. A fully integrated system is demonstrated to display real-time information from the whisker on a graphical interface. 
    more » « less
  4. We developed a novel whisker-follicle sensor that measures three mechanical signals at the whisker base. The first two signals are closely related to the two bending moments, and the third is an approximation to the axial force. Previous simulation studies have shown that these three signals are sufficient to determine the three-dimensional (3D) location at which the whisker makes contact with an object. Here we demonstrate hardware implementation of 3D contact point determination and then use continuous sweeps of the whisker to show proof-of principle 3D contour extraction. We begin by using simulations to confirm the uniqueness of the mapping between the mechanical signals at the whisker base and the 3D contact point location for the specific dimensions of the hardware whisker. Multi-output random forest regression is then used to predict the contact point locations of objects based on observed mechanical signals. When calibrated to the simulated data, signals from the hardware whisker can correctly predict contact point locations to within 1.5 cm about 74% of the time. However, if normalized output voltages from the hardware whiskers are used to train the algorithm (without calibrating to simulation), predictions improve to within 1.5 cm for about 96% of contact points and to within 0.6 cm for about 78% of contact points. This improvement suggests that as long as three appropriate predictor signals are chosen, calibrating to simulations may not be required. The sensor was next used to perform contour extraction on a cylinder and a cone. We show that basic contour extraction can be obtained with just two sweeps of the sensor. With further sweeps, it is expected that full 3D shape reconstruction could be achieved. 
    more » « less
  5. This work investigates the response of forces from fluid flow around seal whisker inspired cylinder geometry at swept back angles. The unique, undulated surface of seal whiskers has been shown to reduce drag and oscillating lift in comparison to smooth cylinders of equivalent dimensions. As seals swim through the water, their whisker orientation with respect to the freestream is constantly changing due to body position, but also the ability to manipulate the position of their whiskers while sensing. Though the effects of orientation and geometry parameters such as varied angle of attack, changes to undulation wavelength, amplitude, and aspect ratio have been investigated in previous literature, there is little research dedicated to characterizing the response of undulated cylinder geometry at sweep angles. In this paper, direct numerical simulation of incompressible flow over a highly resolved whisker surface is used to simulate flow structures and forces over whisker-inspired cylinders at a range of sweep angles from 0 to 60 degrees. It is observed that the decrease in forces in comparison to circular cylinders is still present at all swept angles tested. Root-mean-squared lift coefficient displays a 51.9 to 93.8% reduction, whereas drag displays a 12.9 to 39.1% reduction. When compared to forces on a streamlined elliptical cylinder, sweep angles of 0 to 30 degrees result in a force reduction advantage for the undulated cylinder geometry. Beyond this range at sweep angles of 45 and 60, drag and lift coefficients closely mirror those of the streamlined ellipse and undulated geometry offers no improvement. 
    more » « less