skip to main content


Title: A Whisker-inspired Fin Sensor for Multi-directional Airflow Sensing
This work presents the design, fabrication, and characterization of an airflow sensor inspired by the whiskers of animals. The body of the whisker was replaced with a fin structure in order to increase the air resistance. The fin was suspended by a micro-fabricated spring system at the bottom. A permanent magnet was attached beneath the spring, and the motion of fin was captured by a readily accessible and low cost 3D magnetic sensor located below the magnet. The sensor system was modeled in terms of the dimension parameters of fin and the spring stiffness, which were optimized to improve the performance of the sensor. The system response was then characterized using a commercial wind tunnel and the results were used for sensor calibration. The sensor was integrated into a micro aerial vehicle (MAV) and demonstrated the capability of capturing the velocity of the MAV by sensing the relative airflow during flight.  more » « less
Award ID(s):
1734981
NSF-PAR ID:
10293473
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
1330 to 1337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rats rely heavily on tactile information from their whiskers to acquire information about their surroundings. A whisker has no sensors along its length. Instead, mechanical deformation of the whisker is sensed via receptors at its base. The present study introduces a micro-sensor developed specifically to imitate the sensing of biological rat whiskers. The sensor responds to bending moments resulting from touch and/or airflow in two axes. The sensor was designed based on analytical models from cantilever beam theory, and the models were validated with finite-element analysis. Sensors were then fabricated using micro-milled molds and integrated into an Arduino-based circuit for simple signal acquisition. The present work begins to develop the technology to allow investigation of important engineering aspects of the rat vibrissal system at 1x scale. In addition to its potential use in novel engineering applications, the sensor could aid neuroscientists in their understanding of the rat vibrissal-trigeminal pathway. 
    more » « less
  2. This paper introduces a novel approach to enhance the docking mechanism of sensor packages deployed on bridges using unmanned aerial vehicles (UAVs). The current electropermanent magnet (EPM) system faces challenges in achieving efficient and stable docking due to factors such as airflow, GPS stabilization, and the time required for EPM activation. To address these issues, a biased EPM design is proposed, utilizing additional permanent magnets to achieve neutral buoyancy during UAV deployment. This design optimally balances the weight of the drone and sensor package, providing advantages such as improved stability against external factors and reduced pilot fatigue. Experimental results demonstrate the feasibility of the proposed design, indicating enhanced hold force and an extended range for efficient docking. 
    more » « less
  3. This paper presents the design, modeling, analysis, and experimental validation of an inductive resonant wireless power transfer (WPT) system to power a micro aerial vehicle (MAV). Using WPT, in general, enables longer flight times, virtually eliminates the need for batteries, and minimizes down time for recharging or replacing batteries. The proposed WPT system consists of a transmit coil, which can either be fixed to ground or placed on a mobile platform, and a receive coil carried by the MAV. The details of the WPT circuit design are presented. A power-transfer model is developed for the two-coil system, where the model is used to select suitable coil geometries to maximize the power received by the MAV for hovering. Analysis, simulation, and experimental results are presented to demonstrate the effectiveness of the WPT circuitry. Finally, a wirelessly powered MAV that hovers above the transmit coil is demonstrated in a laboratory setting. 
    more » « less
  4. This works deals with the problem of long-term autonomy in the context of multi-day field deployments of Micro Aerial Vehicle (MAV) systems. To truly depart from the necessity for human intervention for the crucial task of providing battery recharging, and to liberate from the need to operate in a confined range around specially installed infrastructure such as recharging pods, the MAV robot is required to harvest power on its own, but equally importantly also sustain prolonged periods of ambient power scarcity. This implies being able to sustain the battery charge overnight when using solar recharging, or even during multiple days of illumination inadequacy (e.g., due to degraded atmospheric lucidity and heavy overcast). We address this by presenting a Self-Sustainable Autonomous System architecture for MAVs centered around a specially tailored Power Management Stack, which is capable of achieving deep system hibernation, a feature that facilitates the aforementioned functionalities. We present a) continuous, b) multi-day successive, and c) externally-powered recharging that uses a legged robot-mounted Mobile Recharging Station. We conclude by demonstrating a challenging zero-intervention multi-day field deployment mission in the N.Nevada region. 
    more » « less
  5. Real-time navigation in non-trivial environments by micro aerial vehicles (MAVs) predominantly relies on modelling the MAV with idealized geometry, such as a sphere. Simplified, conservative representations increase the likelihood of a planner failing to identify valid paths. That likelihood increases the more a robot's geometry differs from the idealized version. Few current approaches consider these situations; we are unaware of any that do so using perception space representations. This work introduces the egocan, a perception space obstacle representation using line-of-sight free space estimates, and 3D Gap, a perception space approach to gap finding for identifying goal-directed, collision-free directions of travel through 3D space. Both are integrated, with real-time considerations in mind, to define a local planner module of a hierarchical navigation system. The result is Aerial Local Planning in Perception Space (AeriaLPiPS). AeriaLPiPS is shown to be capable of safely navigating a MAV with non-idealized geometry through various environments, including those impassable by traditional real-time approaches. The open source implementation of this work is available at github.com/ivaROS/AeriaLPiPS. 
    more » « less