skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Magnetically Transduced Whisker for Angular Displacement and Moment Sensing
This work presents the design, modeling, and fabrication of a whisker-like sensor capable of measuring the whisker's angular displacement as well as the applied moments at the base of the whisker. The sensor takes advantage of readily accessible and low-cost 3D magnetic sensors to transduce whisker deflections, and a planar serpentine spring structure at the whisker base is used to provide a mechanical suspension for the whisker to rotate. The sensor prototype was characterized, calibrated, and compared with analytical models of the spring system and the magnetic field. The prototype showed a moment sensing range of 1.1N·mm when deflected up to 19.7°. The sensitivity of the sensor was 0.38°/LSB for the angular displacement sensing, and 0.021 Nmm/LSB for the moment sensing. A fully integrated system is demonstrated to display real-time information from the whisker on a graphical interface.  more » « less
Award ID(s):
1734981
PAR ID:
10293476
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
665 to 671
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work presents the design, modeling, and fabrication of a whisker-like sensor capable of measuring the whisker’s angular displacement as well as the applied moments at the base of the whisker. The sensor takes advantage of readily accessible and low-cost 3D magnetic sensors to transduce whisker deflections, and a planar serpentine spring structure at the whisker base is used to provide a mechanical suspension for the whisker to rotate. The sensor prototype was characterized, calibrated, and compared with analytical models of the spring system and the magnetic field. The prototype showed a moment sensing range of 1.1Nmm when deflected up to 19:7. The sensitivity of the sensor was 0:38/LSB for the angular displacement sensing, and 0:021Nmm/LSB for the moment sensing. A fully integrated system is demonstrated to display real-time information from the whisker on a graphical interface. 
    more » « less
  2. null (Ed.)
    This work presents the design, fabrication, and characterization of an airflow sensor inspired by the whiskers of animals. The body of the whisker was replaced with a fin structure in order to increase the air resistance. The fin was suspended by a micro-fabricated spring system at the bottom. A permanent magnet was attached beneath the spring, and the motion of fin was captured by a readily accessible and low cost 3D magnetic sensor located below the magnet. The sensor system was modeled in terms of the dimension parameters of fin and the spring stiffness, which were optimized to improve the performance of the sensor. The system response was then characterized using a commercial wind tunnel and the results were used for sensor calibration. The sensor was integrated into a micro aerial vehicle (MAV) and demonstrated the capability of capturing the velocity of the MAV by sensing the relative airflow during flight. 
    more » « less
  3. Rats rely heavily on tactile information from their whiskers to acquire information about their surroundings. A whisker has no sensors along its length. Instead, mechanical deformation of the whisker is sensed via receptors at its base. The present study introduces a micro-sensor developed specifically to imitate the sensing of biological rat whiskers. The sensor responds to bending moments resulting from touch and/or airflow in two axes. The sensor was designed based on analytical models from cantilever beam theory, and the models were validated with finite-element analysis. Sensors were then fabricated using micro-milled molds and integrated into an Arduino-based circuit for simple signal acquisition. The present work begins to develop the technology to allow investigation of important engineering aspects of the rat vibrissal system at 1x scale. In addition to its potential use in novel engineering applications, the sensor could aid neuroscientists in their understanding of the rat vibrissal-trigeminal pathway. 
    more » « less
  4. We developed a novel whisker-follicle sensor that measures three mechanical signals at the whisker base. The first two signals are closely related to the two bending moments, and the third is an approximation to the axial force. Previous simulation studies have shown that these three signals are sufficient to determine the three-dimensional (3D) location at which the whisker makes contact with an object. Here we demonstrate hardware implementation of 3D contact point determination and then use continuous sweeps of the whisker to show proof-of principle 3D contour extraction. We begin by using simulations to confirm the uniqueness of the mapping between the mechanical signals at the whisker base and the 3D contact point location for the specific dimensions of the hardware whisker. Multi-output random forest regression is then used to predict the contact point locations of objects based on observed mechanical signals. When calibrated to the simulated data, signals from the hardware whisker can correctly predict contact point locations to within 1.5 cm about 74% of the time. However, if normalized output voltages from the hardware whiskers are used to train the algorithm (without calibrating to simulation), predictions improve to within 1.5 cm for about 96% of contact points and to within 0.6 cm for about 78% of contact points. This improvement suggests that as long as three appropriate predictor signals are chosen, calibrating to simulations may not be required. The sensor was next used to perform contour extraction on a cylinder and a cone. We show that basic contour extraction can be obtained with just two sweeps of the sensor. With further sweeps, it is expected that full 3D shape reconstruction could be achieved. 
    more » « less
  5. The need to create more viable soft sensors is increasing in tandem with the growing interest in soft robots. Several sensing methods, like capacitive stretch sensing and intrinsic capacitive self-sensing, have proven to be useful when controlling soft electro-hydraulic actuators, but are still problematic. This is due to challenges around high-voltage electronic interference or the inability to accurately sense the actuator at higher actuation frequencies. These issues are compounded when trying to sense and control the movement of a multiactuator system. To address these shortcomings, we describe a two-part magnetic sensing mechanism to measure the changes in displacement of an electro-hydraulic (HASEL) actuator. Our magnetic sensing mechanism can achieve high accuracy and precision for the HASEL actuator displacement range, and accurately tracks motion at actuation frequencies up to 30 Hz, while being robust to changes in ambient temperature and relative humidity. The high accuracy of the magnetic sensing mechanism is also further emphasized in the gripper demonstration. Using this sensing mechanism, we can detect submillimeter difference in the diameters of three tomatoes. Finally, we successfully perform closed-loop control of one folded HASEL actuator using the sensor, which is then scaled into a deformable tilting platform of six units (one HASEL actuator and one sensor) that control a desired end effector position in 3D space. This work demonstrates the first instance of sensing electro-hydraulic deformation using a magnetic sensing mechanism. The ability to more accurately and precisely sense and control HASEL actuators and similar soft actuators is necessary to improve the abilities of soft, robotic platforms. 
    more » « less