skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adapting control policies from simulation to reality using a pairwise loss
This paper proposes an approach to domain transfer based on a pairwise loss function that helps transfer control policies learned in simulation onto a real robot. We explore the idea in the context of a “category level” manipulation task where a control policy is learned that enables a robot to perform a mating task involving novel objects. We explore the case where depth images are used as the main form of sensor input. Our experimental results demonstrate that proposed method consistently outperforms baseline methods that train only in simulation or that combine real and simulated data in a naive way  more » « less
Award ID(s):
1724191 1724257 1750649 1763878
PAR ID:
10073538
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Symposium on Experimental Robotics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Introduction Short response time is critical for future military medical operations in austere settings or remote areas. Such effective patient care at the point of injury can greatly benefit from the integration of semi-autonomous robotic systems. To achieve autonomy, robots would require massive libraries of maneuvers collected with the goal of training machine learning algorithms. Although this is attainable in controlled settings, obtaining surgical data in austere settings can be difficult. Hence, in this article, we present the Dexterous Surgical Skill (DESK) database for knowledge transfer between robots. The peg transfer task was selected as it is one of the six main tasks of laparoscopic training. In addition, we provide a machine learning framework to evaluate novel transfer learning methodologies on this database. Methods A set of surgical gestures was collected for a peg transfer task, composed of seven atomic maneuvers referred to as surgemes. The collected Dexterous Surgical Skill dataset comprises a set of surgical robotic skills using the four robotic platforms: Taurus II, simulated Taurus II, YuMi, and the da Vinci Research Kit. Then, we explored two different learning scenarios: no-transfer and domain-transfer. In the no-transfer scenario, the training and testing data were obtained from the same domain; whereas in the domain-transfer scenario, the training data are a blend of simulated and real robot data, which are tested on a real robot. Results Using simulation data to train the learning algorithms enhances the performance on the real robot where limited or no real data are available. The transfer model showed an accuracy of 81% for the YuMi robot when the ratio of real-tosimulated data were 22% to 78%. For the Taurus II and the da Vinci, the model showed an accuracy of 97.5% and 93%, respectively, training only with simulation data. Conclusions The results indicate that simulation can be used to augment training data to enhance the performance of learned models in real scenarios. This shows potential for the future use of surgical data from the operating room in deployable surgical robots in remote areas. 
    more » « less
  2. Simulation provides vast benefits for the field of robotics and Human-Robot Interaction (HRI). This study investigates how sensor effects seen in the real domain can be modeled in simulation and what role they play in effective Sim2Real domain transfer for learned perception models. The study considers introducing naive noise approaches such as additive Gaussian and salt and pepper noise as well as data-driven sensor effects models into simulation for representing Microsoft Kinect sensor capabilities and phenomena seen on real world systems. This study quantifies the benefit of multiple approaches to modeling sensor effects in simulation for Sim2Real domain transfer by their object classification improvements in the real domain. User studies are conducted to address hypotheses by training grounded language models in each of the sensor effects modeling cases and evaluated on the robot's interaction capabilities in the real domain. In addition to grounded language performance metrics, user study evaluation includes surveys on the human participant's assessment of the robot's capabilities in the real domain. Results from this pilot study show benefits to modeling sensor noise in simulation for Sim2Real domain transfer. This study also begins to explore the effects that such models have on human-robot interactions. 
    more » « less
  3. An option is a short-term skill consisting of a control policy for a specified region of the state space, and a termination condition recognizing leaving that region. In prior work, we proposed an algorithm called Deep Discovery of Options (DDO) to discover options to accelerate reinforcement learning in Atari games. This paper studies an extension to robot imitation learning, called Discovery of Deep Continuous Options (DDCO), where low-level continuous control skills parametrized by deep neural networks are learned from demonstrations. We extend DDO with: (1) a hybrid categorical–continuous distribution model to parametrize high-level policies that can invoke discrete options as well continuous control actions, and (2) a cross-validation method that relaxes DDO’s requirement that users specify the number of options to be discovered. We evaluate DDCO in simulation of a 3-link robot in the vertical plane pushing a block with friction and gravity, and in two physical experiments on the da Vinci surgical robot, needle insertion where a needle is grasped and inserted into a silicone tissue phantom, and needle bin picking where needles and pins are grasped from a pile and categorized into bins. In the 3-link arm simulation, results suggest that DDCO can take 3x fewer demonstrations to achieve the same reward compared to a baseline imitation learning approach. In the needle insertion task, DDCO was successful 8/10 times compared to the next most accurate imitation learning baseline 6/10. In the surgical bin picking task, the learned policy successfully grasps a single object in 66 out of 99 attempted grasps, and in all but one case successfully recovered from failed grasps by retrying a second time. 
    more » « less
  4. Robots are often built from standardized assemblies, (e.g. arms, legs, or fingers), but each robot must be trained from scratch to control all the actuators of all the parts together. In this paper we demonstrate a new approach that takes a single robot and its controller as input and produces a set of modular controllers for each of these assemblies such that when a new robot is built from the same parts, its control can be quickly learned by reusing the modular controllers. We achieve this with a framework called MeMo which learns (Me)aningful, (Mo)dular controllers. Specifically, we propose a novel modularity objective to learn an appropriate division of labor among the modules. We demonstrate that this objective can be optimized simultaneously with standard behavior cloning loss via noise injection. We benchmark our framework in locomotion and grasping environments on simple to complex robot morphology transfer. We also show that the modules help in task transfer. On both structure and task transfer, MeMo achieves improved training efficiency to graph neural network and Transformer baselines. 
    more » « less
  5. null (Ed.)
    We present a framework for planning complex motor actions such as pouring or scooping from arbitrary start states in cluttered real-world scenes. Traditional approaches to such tasks use dynamic motion primitives (DMPs) learned from human demonstrations. We enhance a recently proposed state of- the-art DMP technique capable of obstacle avoidance by including them within a novel hybrid framework. This complements DMPs with sampling-based motion planning algorithms, using the latter to explore the scene and reach promising regions from which a DMP can successfully complete the task. Experiments indicate that even obstacle-aware DMPs suffer in task success when used in scenarios which largely differ from the trained demonstration in terms of the start, goal, and obstacles. Our hybrid approach significantly outperforms obstacle-aware DMPs by successfully completing tasks in cluttered scenes for a pouring task in simulation. We further demonstrate our method on a real robot for pouring and scooping tasks. 
    more » « less