skip to main content


Title: A ruthenium–platinum metal complex that binds to sarcin ricin loop RNA and lowers mRNA expression
IT127 is a dinuclear transition metal complex that contains a Pt( ii ) and a Ru( iii ) metal center. We have shown that IT127 is significantly more effective in binding the 29-base sarcin ricin loop (SRL) RNA in comparison to Cisplatin, a hallmark anticancer agent. Binding site analysis shows that IT127 prefers purine bases and the GAGA tetraloop region of SRL RNA. Our results with a dihydrofolate reductase (DHFR) model system reveal that IT127 binding to mRNA reduces translation of DHFR enzyme and that the Ru( iii ) and Pt( ii ) centers in IT127 appear to work in a synergistic manner.  more » « less
Award ID(s):
1665435
NSF-PAR ID:
10073902
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
54
Issue:
65
ISSN:
1359-7345
Page Range / eLocation ID:
8987 to 8990
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Combining strain-promoted azide–alkyne cycloaddition (SPAAC) and inorganic click (iClick) reactivity provides access to metal 1,2,3-triazolates. Experimental and computational insights demonstrate that iClick reactivity of the tested metal azides (LM-N 3 , M = Au, W, Re, Ru and Pt) depends on the accessibility of the azide functionality rather than electronic effects imparted by the metal. SPAAC iClick reactivity with cyclooctyne is observed when the azide functionality is sterically unencumbered, e.g. [Au(N 3 )(PPh 3 )] (Au–N3), [W(η 3 -allyl)(N 3 )(bpy)(CO) 2 ] (W–N3), and [Re(N 3 )(bpy)(CO) 3 ] [bpy = 2,2′-bipyridine] (Re–N3). Increased steric bulk and/or preequilibria with high activation barriers prevent SPAAC iClick reactivity for the complexes [Ru(N 3 )(Tp)(PPh 3 ) 2 ] [Tp = tris(pyrazolyl)borate] (Ru–N3), [Pt(N 3 )(CH 3 )(P i Pr 3 ) 2 ] [ i Pr = isopropyl] (Pt(II)–N3), and [Pt(N 3 )(CH 3 ) 3 ] 4 ((PtN3)4). Based on these computational insights, the SPAAC iClick reactivity of [Pt(N 3 )(CH 3 ) 3 (P(CH 3 ) 3 ) 2 ] (Pt(IV)–N3) was successfully predicted. 
    more » « less
  2. Abstract

    The electrochemical ammonia oxidation to dinitrogen as a means for energy and environmental applications is a key technology toward the realization of a sustainable nitrogen cycle. The state-of-the-art metal catalysts including Pt and its bimetallics with Ir show promising activity, albeit suffering from high overpotentials for appreciable current densities and the soaring price of precious metals. Herein, the immense design space of ternary Pt alloy nanostructures is explored by graph neural networks trained on ab initio data for concurrently predicting site reactivity, surface stability, and catalyst synthesizability descriptors. Among a few Ir-free candidates that emerge from the active learning workflow, Pt3Ru-M (M: Fe, Co, or Ni) alloys were successfully synthesized and experimentally verified to be more active toward ammonia oxidation than Pt, Pt3Ir, and Pt3Ru. More importantly, feature attribution analyses using the machine-learned representation of site motifs provide fundamental insights into chemical bonding at metal surfaces and shed light on design strategies for high-performance catalytic systems beyond thed-band center metric of binding sites.

     
    more » « less
  3. G•U wobble base pair frequently occurs in RNA structures. The unique chemical, thermodynamic, and structural properties of the G•U pair are widely exploited in RNA biology. In several RNA molecules, the G•U pair plays key roles in folding, ribozyme catalysis, and interactions with proteins. G•U may occur as a single pair or in tandem motifs with different geometries, electrostatics, and thermodynamics, further extending its biological functions. The metal binding affinity, which is essential for RNA folding, catalysis, and other interactions, differs with respect to the tandem motif type due to the different electrostatic potentials of the major grooves. In this work, we present the crystal structure of an RNA 8-mer duplex r[UCGUGCGA] 2 , providing detailed structural insights into the tandem motif I (5′UG/3′GU) complexed with Ba 2+ cation. We compare the electrostatic potential of the presented motif I major groove with previously published structures of tandem motifs I, II (5′GU/3′UG), and III (5′GG/3′UU). A local patch of a strongly negative electrostatic potential in the major groove of the presented structure forms the metal binding site with the contributions of three oxygen atoms from the tandem. These results give us a better understanding of the G•U tandem motif I as a divalent metal binder, a feature essential for RNA functions. 
    more » « less
  4. Metal phosphides are promising catalysts for hydrocarbon transformations, but computational screening is complicated by their diverse structures and compositions. To disentangle structural from compositional contributions, here we explore the metal-rich M 2 P (M = Fe, Co, Ni, Cu, Mo, Ru, Rh, Pd, Ag, Pt) series in hexagonal and orthorhombic structures that are common to a subset of these materials, using supercell density functional theory (DFT). To understand the contribution of metal choice to utility for catalytic ethane dehydrogenation (EDH), we compute and compare the adsorption of key EDH intermediates across low-index surface terminations. These materials expose both metal and phosphide sites. Calculations show that binding energies at metal sites correlate with the bulk metals, with P incorporation either enhancing or suppressing binding. Phosphide sites compete with metal sites for adsorbates and tend to suppress overactivation by destabilizing highly dehydrogenated species engaging in C–H bond breaking. Results are generally insensitive to bulk structure and surface facet. Results suggest metal-rich Pd phosphides to have favorable adsorption characteristics for catalytic dehydrogenation, consistent with recent observations. 
    more » « less
  5. Abstract

    Searching for a connection between the two‐electron redox behavior of Group‐14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(o‐(Ph2P)C6H4)2GeIVCl2]PtIICl2and [(o‐(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o‐(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtIIand GeIII–PtIIIisomers, respectively. Conversion of the GeIV–PtIIisomer into the platinum germyl complex is a rare example of a light‐induced transition‐metal/main‐group‐element bond‐forming process. Finally, transient‐absorption‐spectroscopy studies carried out on the GeIII–PtIIIisomer point to a ligand arene–Cl.charge‐transfer complex as an intermediate.

     
    more » « less