skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Formation of Microcages from a Collagen Mimetic Peptide via Metal-Ligand Interactions
Here, the hierarchical assembly of a collagen mimetic peptide (CMP) displaying four bipyridine moieties is described. The CMP was capable of forming triple helices followed by self-assembly into disks and domes. Treatment of these disks and domes with metal ions such as Fe(II), Cu(II), Zn(II), Co(II), and Ru(III) triggered the formation of microcages, and micron-sized cup-like structures. Mechanistic studies suggest that the formation of the microcages proceeds from the disks and domes in a metal-dependent fashion. Fluorescently-labeled dextrans were encapsulated within the cages and displayed a time-dependent release using thermal conditions.  more » « less
Award ID(s):
2108722
PAR ID:
10350215
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Molecules
Volume:
26
Issue:
16
ISSN:
1420-3049
Page Range / eLocation ID:
4888
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The free energy of a ternary system, such as a triblock copolymer, is a sum of two parts: an interface energy determined by the size of the interfaces separating the micro-domains of the three constituents, and a long range interaction energy that serves to prevent unlimited micro-domain growth. In two dimensions a parameter range is identified where the system admits stable stationary disk assemblies. Such an assembly consists of perturbed disks made from either type-I constituent or type-II constituent. All the type-I disks have approximately the same radius and all the type-II disks also have approximately the same radius. The locations of the disks are determined by minimization of a function. Depending on the parameters, the disks of the two types can be mixed in an organized way, or mixed in a random way. They can also be fully separated. The first scenario offers a mathematical proof of the existence of a morphological phase for triblock copolymers conjectured by polymer scientists. The last scenario shows that the ternary system is capable of producing two levels of structure. The primary structure is at the microscopic level where disks form near-perfect lattices. The secondary structure is at the macroscopic level forming two large regions, one filled with type-I disks and the other filled with type-II disks. A macroscopic, circular interface separates the two regions. 
    more » « less
  2. Abstract We present an overview of the Large Program, “Early Planet Formation in Embedded Disks (eDisk),” conducted with the Atacama Large Millimeter/submillimeter Array (ALMA). The ubiquitous detections of substructures, particularly rings and gaps, in protoplanetary disks around T Tauri stars raise the possibility that at least some planet formation may have already started during the embedded stages of star formation. In order to address exactly how and when planet formation is initiated, the program focuses on searching for substructures in disks around 12 Class 0 and 7 Class I protostars in nearby (<200 pc) star-forming regions through 1.3 mm continuum observations at a resolution of ∼7 au (0.″04). The initial results show that the continuum emission, mostly arising from dust disks around the sample protostars, has relatively few distinctive substructures, such as rings and spirals, in marked contrast to Class II disks. The dramatic difference may suggest that substructures quickly develop in disks when the systems evolve from protostars to Class II sources, or alternatively that high optical depth of the continuum emission could obscure internal structures. Kinematic information obtained through CO isotopologue lines and other lines reveals the presence of Keplerian disks around protostars, providing us with crucial physical parameters, in particular, the dynamical mass of the central protostars. We describe the background of the eDisk program, the sample selection and their ALMA observations, and the data reduction, and we also highlight representative first-look results. 
    more » « less
  3. null (Ed.)
    Assembling peptides allow the creation of structurally complex materials, where amino acid selection influences resulting properties. We present a synergistic approach of experiments and simulations for examining the influence of natural and non-natural amino acid substitutions via incorporation of charged residues and a reactive handle on the thermal stability and assembly of multifunctional collagen mimetic peptides (CMPs). Experimentally, we observed inclusion of charged residues significantly decreased the melting temperature of CMP triple helices with further destabilization upon inclusion of the reactive handle. Atomistic simulations of a single CMP triple helix in explicit water showed increased residue-level and helical structural fluctuations caused by the inclusion of the reactive handle; however, these atomistic simulations cannot be used to predict changes in CMP melting transition. Coarse-grained (CG) simulations of CMPs at experimentally relevant solution conditions, showed, qualitatively, the same trends as experiments in CMP melting transition temperature with CMP design. These simulations show that when charged residues are included electrostatic repulsions significantly destabilize the CMP triple helix and that an additional inclusion of a reactive handle does not significantly change the melting transition. Based on findings from both experiments and simulations, the sequence design was refined for increased CMP triple helix thermal stability, and the reactive handle was utilized for the incorporation of the assembled CMPs within covalently crosslinked hydrogels. Overall, a unique approach was established for predicting stability of CMP triple helices for various sequences prior to synthesis, providing molecular insights for sequence design towards the creation of bulk nanostructured soft biomaterials. 
    more » « less
  4. Abstract We report the synthesis of a novel metal–organic capsule constructed from six pyrogallol[4]arene macrocycles, which are switched together by 16 FeIIIand 16 CoIIions. This supramolecular structure is the first instance of a spheroidal heterometallic nanocage assembled through a one‐step metal–ligand coordination approach. This new assembly also demonstrates an important proof of concept through the formation of multiple heterometallic metal–metal interactions within the capsule framework. Photophysical and electrochemical studies of self‐assembled capsule films indicate their potential as semiconductors. These materials display unexpected photoelectric conversion properties, thus representing an emergent phenomenon in discrete metal–organic supramolecular assemblies. 
    more » « less
  5. null (Ed.)
    By means of density functional theory (DFT) computations, we explored the potential of carbon- and nitrogen-doped Mo 2 P (CMP and NMP) layered materials as the representative of transition metal phosphides (TMPs) for the development of lithium-ion battery (LIB) anode materials, paying special attention to the synergistic effects of the dopants. Both CMP and NMP have exceptional stabilities and excellent electronic conductivity, and a high theoretical maximum storage capacity of ∼ 486 mA h g −1 . Li-ion diffusion barriers on the two-dimensional (2D) CMP and NMP surfaces are extremely low (∼0.036 eV), and it is expected that on these 2D layers Li can diffuse 10 4 times faster than that on MoS 2 and graphene at room temperature, and both monolayers have relatively low average open-circuit voltage (0.38 and 0.4 eV). All these exceptional properties make CMP and NMP monolayers as promising candidates for high-performance LIB anode materials, which also demonstrates that simple doping is an effective strategy to enhance the performance of anode materials in rechargeable batteries. 
    more » « less