skip to main content

Title: A Nutritional Label for Rankings
Algorithmic decisions often result in scoring and ranking individuals to determine credit worthiness, qualifications for college admissions and employment, and compatibility as dating partners. While automatic and seemingly objective, ranking algorithms can discriminate against individuals and protected groups, and exhibit low diversity. Furthermore, ranked results are often unstable -- small changes in the input data or in the ranking methodology may lead to drastic changes in the output, making the result uninformative and easy to manipulate. Similar concerns apply in cases where items other than individuals are ranked, including colleges, academic departments, or products. Despite the ubiquity of rankers, there is, to the best of our knowledge, no technical work that focuses on making rankers transparent. In this demonstration we present Ranking Facts, a Web-based application that generates a "nutritional label" for rankings. Ranking Facts is made up of a collection of visual widgets that implement our latest research results on fairness, stability, and transparency for rankings, and that communicate details of the ranking methodology, or of the output, to the end user. We will showcase Ranking Facts on real datasets from different domains, including college rankings, criminal risk assessment, and financial services.
Authors:
; ; ; ; ;
Award ID(s):
1740996 1741047 1741022
Publication Date:
NSF-PAR ID:
10074160
Journal Name:
Proceedings of the 2018 International Conference on Management of Data
Page Range or eLocation-ID:
1773 to 1776
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce the concept of \emph{expected exposure} as the average attention ranked items receive from users over repeated samples of the same query. Furthermore, we advocate for the adoption of the principle of equal expected exposure: given a fixed information need, no item should receive more or less expected exposure than any other item of the same relevance grade. We argue that this principle is desirable for many retrieval objectives and scenarios, including topical diversity and fair ranking. Leveraging user models from existing retrieval metrics, we propose a general evaluation methodology based on expected exposure and draw connections to related metrics in information retrieval evaluation. Importantly, this methodology relaxes classic information retrieval assumptions, allowing a system, in response to a query, to produce a \emph{distribution over rankings} instead of a single fixed ranking. We study the behavior of the expected exposure metric and stochastic rankers across a variety of information access conditions, including \emph{ad hoc} retrieval and recommendation. We believe that measuring and optimizing expected exposure metrics using randomization opens a new area for retrieval algorithm development and progress.
  2. Combining the preferences of many rankers into one single consensus ranking is critical for consequential applications from hiring and admissions to lending. While group fairness has been extensively studied for classification, group fairness in rankings and in particular rank aggregation remains in its infancy. Recent work introduced the concept of fair rank aggregation for combining rankings but restricted to the case when candidates have a single binary protected attribute, i.e., they fall into two groups only. Yet it remains an open problem how to create a consensus ranking that represents the preferences of all rankers while ensuring fair treatment for candidates with multiple protected attributes such as gender, race, and nationality. In this work, we are the first to define and solve this open Multi-attribute Fair Consensus Ranking (MFCR) problem. As a foundation, we design novel group fairness criteria for rankings, called MANI-Rank, ensuring fair treatment of groups defined by individual protected attributes and their intersection. Leveraging the MANI-Rank criteria, we develop a series of algorithms that for the first time tackle the MFCR problem. Our experimental study with a rich variety of consensus scenarios demonstrates our MFCR methodology is the only approach to achieve both intersectional and protected attributemore »fairness while also representing the preferences expressed through many base rankings. Our real-world case study on merit scholarships illustrates the effectiveness of our MFCR methods to mitigate bias across multiple protected attributes and their intersections.« less
  3. The availability of massive data and computing allowing for effective data driven neural approaches is having a major impact on AI and IR research, but these models have a basic problem with efficiency. Current neural ranking models are implemented as multistage rankers: for efficiency reasons, the neural model only re-ranks the top ranked documents retrieved by a first-stage efficient ranker in response to a given query. Neural ranking models learn dense representations causing essentially every query term to match every document term, making it highly inefficient or intractable to rank the whole collection. The reliance on a first stage ranker creates a dual problem: First, the interaction and combination effects are not well understood. Second, the first stage ranker serves as a "gate-keeper" or filter effectively blocking the potential of neural models to uncover new relevant documents. In this work, we propose a standalone neural ranking model SNRM by introducing a sparsity property to learn a latent sparse representation for each query and document. This representation captures the semantic relationship between the query and documents, but is also {sparse} enough to enable constructing an inverted index for the whole collection. We parameterize the sparsity of the model to yield amore »retrieval model as efficient as conventional term based models. Our model gains in efficiency without loss of effectiveness: it not only outperforms the existing term matching baselines, but also performs similar to the recent re-ranking based neural models with dense representations. More generally, our results demonstrate the importance of sparsity in neural model learning and show that dense representations can be pruned effectively, giving new insights about essential semantic features and their distributions.« less
  4. Selecting the best items in a dataset is a common task in data exploration. However, the concept of “best” lies in the eyes of the beholder: different users may consider different attributes more important and, hence, arrive at different rankings. Nevertheless, one can remove “dominated” items and create a “representative” subset of the data, comprising the “best items” in it. A Pareto-optimal representative is guaranteed to contain the best item of each possible ranking, but it can be a large portion of data. A much smaller representative can be found if we relax the requirement of including the best item for each user and, instead, just limit the users’ “regret”. Existing work defines regret as the loss in score by limiting consideration to the representative instead of the full dataset, for any chosen ranking function. However, the score is often not a meaningful number, and users may not understand its absolute value. Sometimes small ranges in score can include large fractions of the dataset. In contrast, users do understand the notion of rank ordering. Therefore, we consider items’ positions in the ranked list in defining the regret and propose the rank-regret representative as the minimal subset of the data containingmore »at least one of the top-k of any possible ranking function. This problem is polynomial time solvable in 2D space but is NP-hard on 3 or more dimensions. We design a suite of algorithms to fulfill different purposes, such as whether relaxation is permitted on k, the result size, or both, whether a distribution is known, whether theoretical guarantees or practical efficiency is important, etc. Experiments on real datasets demonstrate that we can efficiently find small subsets with small rank-regrets.« less
  5. A number of applications require two-sample testing on ranked preference data. For instance, in crowdsourcing, there is a long-standing question of whether pairwise comparison data provided by people is distributed similar to ratings-converted-to-comparisons. Other examples include sports data analysis and peer grading. In this paper, we design two-sample tests for pairwise comparison data and ranking data. For our two-sample test for pairwise comparison data, we establish an upper bound on the sample complexity required to correctly distinguish between the distributions of the two sets of samples. Our test requires essentially no assumptions on the distributions. We then prove complementary lower bounds showing that our results are tight (in the minimax sense) up to constant factors. We investigate the role of modeling assumptions by proving lower bounds for a range of pairwise comparison models (WST, MST, SST, parameter-based such as BTL and Thurstone). We also provide testing algorithms and associated sample complexity bounds for the problem of two-sample testing with partial (or total) ranking data. Furthermore, we empirically evaluate our results via extensive simulations as well as two real-world datasets consisting of pairwise comparisons. By applying our two-sample test on real-world pairwise comparison data, we conclude that ratings and rankings providedmore »by people are indeed distributed differently. On the other hand, our test recognizes no significant difference in the relative performance of European football teams across two seasons. Finally, we apply our two-sample test on a real-world partial and total ranking dataset and find a statistically significant difference in Sushi preferences across demographic divisions based on gender, age and region of residence.« less