skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Nutritional Label for Rankings
Algorithmic decisions often result in scoring and ranking individuals to determine credit worthiness, qualifications for college admissions and employment, and compatibility as dating partners. While automatic and seemingly objective, ranking algorithms can discriminate against individuals and protected groups, and exhibit low diversity. Furthermore, ranked results are often unstable -- small changes in the input data or in the ranking methodology may lead to drastic changes in the output, making the result uninformative and easy to manipulate. Similar concerns apply in cases where items other than individuals are ranked, including colleges, academic departments, or products. Despite the ubiquity of rankers, there is, to the best of our knowledge, no technical work that focuses on making rankers transparent. In this demonstration we present Ranking Facts, a Web-based application that generates a "nutritional label" for rankings. Ranking Facts is made up of a collection of visual widgets that implement our latest research results on fairness, stability, and transparency for rankings, and that communicate details of the ranking methodology, or of the output, to the end user. We will showcase Ranking Facts on real datasets from different domains, including college rankings, criminal risk assessment, and financial services.  more » « less
Award ID(s):
1740996 1741047 1741022
PAR ID:
10074160
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2018 International Conference on Management of Data
Page Range / eLocation ID:
1773 to 1776
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We introduce the concept of \emph{expected exposure} as the average attention ranked items receive from users over repeated samples of the same query. Furthermore, we advocate for the adoption of the principle of equal expected exposure: given a fixed information need, no item should receive more or less expected exposure than any other item of the same relevance grade. We argue that this principle is desirable for many retrieval objectives and scenarios, including topical diversity and fair ranking. Leveraging user models from existing retrieval metrics, we propose a general evaluation methodology based on expected exposure and draw connections to related metrics in information retrieval evaluation. Importantly, this methodology relaxes classic information retrieval assumptions, allowing a system, in response to a query, to produce a \emph{distribution over rankings} instead of a single fixed ranking. We study the behavior of the expected exposure metric and stochastic rankers across a variety of information access conditions, including \emph{ad hoc} retrieval and recommendation. We believe that measuring and optimizing expected exposure metrics using randomization opens a new area for retrieval algorithm development and progress. 
    more » « less
  2. Ranking schemes drive many real-world decisions, like, where to study, whom to hire, what to buy, etc. Many of these decisions often come with high consequences. For example, a university can be deemed less prestigious if not featured in a top-k list, and consumers might not even explore products that do not get recommended to buyers. At the heart of most of these decisions are opaque ranking schemes, which dictate the ordering of data entities, but their internal logic is inaccessible or proprietary. Drawing inferences about the ranking differences is like a guessing game to the stakeholders, like, the rankees (i.e., the entities who are ranked, like product companies) and the decision-makers (i.e., who use the rankings, like buyers). In this paper, we aim to enable transparency in ranking interpretation by using algorithmic rankers that learn from available data and by enabling human reasoning about the learned ranking differences using explainable AI (XAI) methods. To realize this aim, we leverage the exploration–explanation paradigm of human–data interaction to let human stakeholders explore subsets and groupings of complex multi-attribute ranking data using visual explanations of model fit and attribute influence on rankings. We realize this explanation paradigm for transparent ranking interpretation in TRIVEA, a visual analytic system that is fueled by: (i) visualizations of model fit derived from algorithmic rankers that learn the associations between attributes and rankings from available data and (ii) visual explanations derived from XAI methods that help abstract important patterns, like, the relative influence of attributes in different ranking ranges. Using TRIVEA, end users not trained in data science have the agency to transparently reason about the global and local behavior of the rankings without the need to open black-box ranking models and develop confidence in the resulting attribute-based inferences. We demonstrate the efficacy of TRIVEA using multiple usage scenarios and subjective feedback from researchers with diverse domain expertise. 
    more » « less
  3. Combining the preferences of many rankers into one single consensus ranking is critical for consequential applications from hiring and admissions to lending. While group fairness has been extensively studied for classification, group fairness in rankings and in particular rank aggregation remains in its infancy. Recent work introduced the concept of fair rank aggregation for combining rankings but restricted to the case when candidates have a single binary protected attribute, i.e., they fall into two groups only. Yet it remains an open problem how to create a consensus ranking that represents the preferences of all rankers while ensuring fair treatment for candidates with multiple protected attributes such as gender, race, and nationality. In this work, we are the first to define and solve this open Multi-attribute Fair Consensus Ranking (MFCR) problem. As a foundation, we design novel group fairness criteria for rankings, called MANI-Rank, ensuring fair treatment of groups defined by individual protected attributes and their intersection. Leveraging the MANI-Rank criteria, we develop a series of algorithms that for the first time tackle the MFCR problem. Our experimental study with a rich variety of consensus scenarios demonstrates our MFCR methodology is the only approach to achieve both intersectional and protected attribute fairness while also representing the preferences expressed through many base rankings. Our real-world case study on merit scholarships illustrates the effectiveness of our MFCR methods to mitigate bias across multiple protected attributes and their intersections. 
    more » « less
  4. Salakhutdinov, Ruslan; Kolter, Zico; Heller, Katherine; Weller, Adrian; Oliver, Nuria; Scarlett, Jonathan; Berkenkamp, Felix (Ed.)
    Rankings are ubiquitous across many applications, from search engines to hiring committees. In practice, many rankings are derived from the output of predictors. However, when predictors trained for classification tasks have intrinsic uncertainty, it is not obvious how this uncertainty should be represented in the derived rankings. Our work considers ranking functions: maps from individual predictions for a classification task to distributions over rankings. We focus on two aspects of ranking functions: stability to perturbations in predictions and fairness towards both individuals and subgroups. Not only is stability an important requirement for its own sake, but — as we show — it composes harmoniously with individual fairness in the sense of Dwork et al. (2012). While deterministic ranking functions cannot be stable aside from trivial scenarios, we show that the recently proposed uncertainty aware (UA) ranking functions of Singh et al. (2021) are stable. Our main result is that UA rankings also achieve group fairness through successful composition with multiaccurate or multicalibrated predictors. Our work demonstrates that UA rankings naturally interpolate between group and individual level fairness guarantees, while simultaneously satisfying stability guarantees important whenever machine-learned predictions are used. 
    more » « less
  5. For applications where multiple stakeholders provide recommendations, a fair consensus ranking must not only ensure that the preferences of rankers are well represented, but must also mitigate disadvantages among socio-demographic groups in the final result. However, there is little empirical guidance on the value or challenges of visualizing and integrating fairness metrics and algorithms into human-in-the-loop systems to aid decision-makers. In this work, we design a study to analyze the effectiveness of integrating such fairness metrics-based visualization and algorithms. We explore this through a task-based crowdsourced experiment comparing an interactive visualization system for constructing consensus rankings, ConsensusFuse, with a similar system that includes visual encodings of fairness metrics and fair-rank generation algorithms, FairFuse. We analyze the measure of fairness, agreement of rankers’ decisions, and user interactions in constructing the fair consensus ranking across these two systems. In our study with 200 participants, results suggest that providing these fairness-oriented support features nudges users to align their decision with the fairness metrics while minimizing the tedious process of manually having to amend the consensus ranking. We discuss the implications of these results for the design of next-generation fairness oriented-systems and along with emerging directions for future research. 
    more » « less