skip to main content


Search for: All records

Award ID contains: 1741047

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Items from a database are often ranked based on a combination of criteria. The weight given to each criterion in the combination can greatly affect the fairness of the produced ranking, for example, preferring men over women. A user may have the flexibility to choose combinations that weigh these criteria differently, within limits. In this paper, we develop a system that helps users choose criterion weights that lead to greater fairness. We consider ranking functions that compute the score of each item as a weighted sum of (numeric) attribute values, and then sort items on their score. Each ranking function can be expressed as a point in a multidimensional space. For a broad range of fairness criteria, including proportionality, we show how to efficiently identify regions in this space that satisfy these criteria. Using this identification method, our system is able to tell users whether their proposed ranking function satisfies the desired fairness criteria and, if it does not, to suggest the smallest modification that does. Our extensive experiments on real datasets demonstrate that our methods are able to find solutions that satisfy fairness criteria effectively (usually with only small changes to proposed weight vectors) and efficiently (in interactive time, after some initial pre-processing). 
    more » « less
  2. Algorithmic decisions often result in scoring and ranking individuals to determine credit worthiness, qualifications for college admissions and employment, and compatibility as dating partners. While automatic and seemingly objective, ranking algorithms can discriminate against individuals and protected groups, and exhibit low diversity. Furthermore, ranked results are often unstable -- small changes in the input data or in the ranking methodology may lead to drastic changes in the output, making the result uninformative and easy to manipulate. Similar concerns apply in cases where items other than individuals are ranked, including colleges, academic departments, or products. Despite the ubiquity of rankers, there is, to the best of our knowledge, no technical work that focuses on making rankers transparent. In this demonstration we present Ranking Facts, a Web-based application that generates a "nutritional label" for rankings. Ranking Facts is made up of a collection of visual widgets that implement our latest research results on fairness, stability, and transparency for rankings, and that communicate details of the ranking methodology, or of the output, to the end user. We will showcase Ranking Facts on real datasets from different domains, including college rankings, criminal risk assessment, and financial services. 
    more » « less