skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3-1-1 Calls Hot Spot Analysis During Hurricane Harvey: Preliminary Results
Hurricane Harvey caused massive damage and necessitated the need for identification of areas under high risk. During Harvey, the city of Houston received more than 77000 3-1-1 calls for assistance. Due to damage caused to the infrastructure, it became difficult to handle and respond to the crisis. Geographic Information Systems (GIS) are a vital technology to assist with real-time disaster monitoring. In this regard, for this work-in-progress paper, we investigated if a correlation could be found between 3-1-1 data calls made during Hurricane Harvey and aerial images captured during the event. Specifically, we were interested to see if 3-1-1 data could be ground-truthed via hot spot analysis. Our preliminary results indicate that visual representation of 3-1-1 call data can aid in analyzing the expected areas of high traffic of calls for assistance and plan an effective way to manage resources. Future work will involve more in-depth analysis of combined 3-1-1 call data with satellite imagery using image classification techniques.  more » « less
Award ID(s):
1659735
PAR ID:
10074270
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
15th International Conference on Information Systems for Crisis Response and Management (ISCRAM)
Page Range / eLocation ID:
350-361
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hurricane storm surges are influenced by wind intensity, forward speed, width and slope of the ocean bottom, central pressure, angle of approach, shape of coastal lines, local features, and storm size. A numerical experiment is conducted using the Advanced Circulation + Simulation and Simulating Waves Nearshore (ADCIRC + SWAN) coupled model for understanding the effects of wind intensity, forward speed, and wave on the storm surges caused by Hurricane Harvey. The ADCIRC + SWAN is used to simulate hurricane storm surges and waves. The wind fields of Hurricane Harvey were reconstructed from observed data, aided by a variety of methodologies and analyses conducted by Ocean Weather Inc (OWI) after the event. These reconstructed wind fields were used as the meteorological forcing in the base case in ADCIRC+SWAN to investigate the storm surges caused by the hurricane. Hurricane Harvey was the second most costly hurricane in the United States, causing severe urban flooding by dropping more than 60 inches of rainfall in Texas. The hurricane made three landfalls, with its first landfall as a Category 4 based on the Saffir–Simpson Hurricane Wind Scale (SSHWS), with wind intensities of 212.98 km/h (59 m/s). The storm surges caused by Hurricane Harvey were unique due to the slow speed, crooked tracks, triple landfalls in the USA, and excessive rain. The model’s storm surge and wave results were compared against observed data. High water marks at 21 locations and time series at 12 National Oceanic and Atmospheric Administration (NOAA) gauges were compared with the generated results. Several cases were investigated by increasing or decreasing the wind intensity or hurricane forward speed by 25% of the OWI wind and pressure data. The effects of the wave were analyzed by comparing the results obtained from ADCIRC + SWAN (with waves) and ADCIRC (without waves) models. The study found that the changes in wind intensity had the most significant effect on storm surges, followed by wave and forward speed changes. This study signifies the importance of considering these factors to enhance accuracy in predicting storm surges. 
    more » « less
  2. Widespread disasters can overload official agencies’ capacity to provide assistance, and often citizen-led groups emerge to assist with disaster response. As social media platforms have expanded, emergent rescue groups have many ways to harness network and mobile tools to coordinate actions and help fellow citizens. This study used semi-structured interviews and photo elicitation techniques to better understand how wide-scale rescues occurred during the 2017 Hurricane Harvey flooding in the Greater Houston, Texas USA area. We found that citizens used diverse apps and social media-related platforms during these rescues and that they played one of three roles: rescuer, dispatcher, or information compiler. The key social media coordination challenges these rescuers faced were incomplete feedback loops, unclear prioritization, and communication overload. This work-in-progress paper contributes to the field of crisis and disaster response research by sharing the nuances in how citizens use social media to respond to calls for help from flooding victims. 
    more » « less
  3. Climate change has led to a variety of disasters that have caused damage to infrastructure and the economy with societal impacts to human living. Understanding people’s emotions and stressors during disaster times will enable preparation strategies for mitigating further consequences. In this paper, we mine emotions and stressors encountered by people and shared on Twitter during Hurricane Harvey in 2017 as a showcase. In this work, we acquired a dataset of tweets from Twitter on Hurricane Harvey from 20 August 2017 to 30 August 2017. The dataset consists of around 400,000 tweets and is available on Kaggle. Next, a BERT-based model is employed to predict emotions associated with tweets posted by users. Then, natural language processing (NLP) techniques are utilized on negative-emotion tweets to explore the trends and prevalence of the topics discussed during the disaster event. Using Latent Dirichlet Allocation (LDA) topic modeling, we identified themes, enabling us to manually extract stressors termed as climate-change-related stressors. Results show that 20 climate-change-related stressors were extracted and that emotions peaked during the deadliest phase of the disaster. This indicates that tracking emotions may be a useful approach for studying environmentally determined well-being outcomes in light of understanding climate change impacts. 
    more » « less
  4. Abstract A mobile Shared Mobile Atmospheric Research and Teaching (SMART) radar was deployed in Hurricane Harvey and coordinated with the Corpus Christi, TX, WSR‐88D radar to retrieve airflow during landfall. Aerodynamic surface roughness estimates and a logarithmic wind profile assumption were used to project the 500‐m radar‐derived maximum wind field to near the surface. The logarithmic wind assumption was justified using radiosonde soundings taken within the storm, while the radar wind estimates were validated against an array of StickNets. For the data examined here, the radar projections had root‐mean‐squared error of 3.9 m/s and a high bias of 2.3 m/s. Mesovorticies in Harvey's eyewall produced the strongest radar‐observed winds. Given the wind analysis, Harvey was, at most, a Category 3 hurricane (50–58 m/s sustained winds) at landfall. This study demonstrates the utility of integrated remote and in situ observations in deriving spatiotemporal maps of wind maxima during hurricane landfalls. 
    more » « less
  5. null (Ed.)
    Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to different types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have major limitations in generalization based on testing data. To address the aforementioned issues in urban flood mapping, we developed a patch similarity convolutional neural network (PSNet) using satellite multispectral surface reflectance imagery before and after flooding with a spatial resolution of 3 meters. We used spectral reflectance instead of raw pixel DNs so that the influence of inconsistent illumination caused by varied weather conditions at the time of data collection can be greatly reduced. Such consistent spectral reflectance data also enhance the generalization capability of the proposed model. Experiments on the high resolution imagery before and after the urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score, and overall accuracy compared with baseline classification models including support vector machine, decision tree, random forest, and AdaBoost, which were often poor in either precision or recall. The study paves the way to fuse bi-temporal remote sensing images for near real-time precision damage mapping associated with other types of natural hazards (e.g., wildfires and earthquakes). 
    more » « less