skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mesoporous scaffolds based on TiO 2 nanorods and nanoparticles for efficient hybrid perovskite solar cells
In a mesoporous hybrid perovskite solar cell (PSC), the mesoporous scaffold plays key roles in controlling the crystallization of the perovskite material and in the charge carrier transport, and hence is critical for developing highly efficient PSCs. Here we report a study on blending micrometer-long TiO 2 nanorods (NRs) into the commonly used nanoparticles (NPs) to optimize the mesoporous structure, with the aim of enhancing the perovskite material loading and connectivity as well as light harvesting. It was found that with 5–10% of NR incorporation, a uniform scaffold can be spin-coated and the PSC performance was improved. In comparison to the pure NP-based device, the power conversion efficiency was increased by about 27% when 10% of the NRs were incorporated, due to enhanced light harvesting and charge collection. However, with more NR blending, a homogeneous scaffold cannot be formed, resulting in PSC performance degradation. These findings contribute to a better design of mesoporous scaffolds for high-performance PSCs.  more » « less
Award ID(s):
1438681
PAR ID:
10074466
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
3
Issue:
48
ISSN:
2050-7488
Page Range / eLocation ID:
24315 to 24321
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using sunlight to produce hydrogen gas via photocatalytic water splitting is highly desirable for green energy harvesting and sustainability. In this work, Mn 2+ doped 1-dimensional (1D) CdS nanorods (NRs) with Pt tips ( i.e. , 1D Mn:CdS-Pt NRs) were synthesized for photocatalytic water splitting to generate hydrogen gas. The incorporation of Mn 2+ dopants inside the 1D CdS NRs with a significantly longer lifetime (∼ms) than that of host excitons (∼ns) facilitates charge separation; the electron transfer to metal Pt tips leads to enhanced photocatalytic activity in water splitting redox reactions. The as-synthesized Mn 2+ doped CdS NR-based photocatalyst generated an order of magnitude greater yield of hydrogen gas compared to the undoped CdS NR-based photocatalyst. The enhanced charge transport from the long lifetime excited state of Mn 2+ dopants in light harvesting semiconductor nanomaterials presents a new opportunity to increase the overall photocatalytic performance. 
    more » « less
  2. Perovskites have been firmly established as one of the most promising materials for third-generation solar cells. There remain several great and lingering challenges to be addressed regarding device efficiency and stability. The photovoltaic efficiency of perovskite solar cells (PSCs) depends drastically on the charge-carrier dynamics. This complex process includes charge-carrier generation, extraction, transport and collection, each of which needs to be modulated in a favorable manner to achieve high performance. Two-dimensional materials (TDMs) including graphene and its derivatives, transition metal dichalcogenides ( e.g. , MoS 2 , WS 2 ), black phosphorus (BP), metal nanosheets and two-dimensional (2D) perovskite active layers have attracted much attention for application in perovskite solar cells due to their high carrier mobility and tunable work function properties which greatly impact the charge carrier dynamics of PSCs. To date, significant advances have been achieved in the field of TDM-based PSCs. In this review, the recent progress in the development and application of TDMs ( i.e. , graphene, graphdiyne, transition metal dichalcogenides, BP, and others) as electrodes, hole transporting layers, electron transporting layers and buffer layers in PSCs is detailed. 2D perovskites as active absorber materials in PSCs are also summarized. The effect of TDMs and 2D perovskites on the charge carrier dynamics of PSCs is discussed to provide a comprehensive understanding of their optoelectronic processes. The challenges facing the PSC devices are emphasized with corresponding solutions to these problems provided with the overall goal of improving the efficiency and stability of photovoltaic devices. 
    more » « less
  3. Abstract Among promising applications of metal‐halide perovskite, the most research progress is made for perovskite solar cells (PSCs). Data from myriads of research work enables leveraging machine learning (ML) to significantly expedite material and device optimization as well as potentially design novel configurations. This paper represents one of the first efforts in providing open‐source ML tools developed utilizing the Perovskite Database Project (PDP), the most comprehensive open‐source PSC database to date with over 43 000 entries from published literature. Three ML model architectures with short‐circuit current density (Jsc) as a target are trained exploiting the PDP. Using the XGBoost architecture, a root mean squared error (RMSE) of 3.58 , R2of 0.35 and a mean absolute percentage error (MAPE) of 9.49% are achieved. This performance is comparable to results reported in literature, and through further investigation can likely be improved. To overcome challenges with manual database creation, an open‐source data cleaning pipeline is created for PDP data. Through the creation of these tools, which have been published on GitHub, this research aims to make ML available to aid the design for PSC while showing the already promising performance achieved. The tools can be adapted for other applications, such as perovskite light‐emitting diodes (PeLEDs), if a sufficient database is available. 
    more » « less
  4. null (Ed.)
    Chemical Looping Reaction is a key strategy to achieve both emission reduction and carbon utilization while producing various value-added chemicals, through redox reactions. Here we study the effect of nanoshape ceria supported Ru catalysts for plasma assisted Chemical Looping Reforming reduction step coupled with water splitting oxidation step reactions in the temperature range 150 ⁰C to 400 ⁰C at 1 atm pressure. The oxygen carrier/catalyst combination materials used are Ru/CeO2 nanorods (NR), Ru/CeO2 nanocubes (NC), Ru/SiO2 nanospheres (NS), and Ni-based perovskite mixed with CeO2. NRs and NCs showed the best catalytic performance followed by Ni-based perovskite and NS. Differences in the selectivity and reactivity for the NRs and NCs were noticed. The NCs showed slightly higher selectivity towards H2 formation during reduction step and lesser carbon deposition. From the analysis of data and literature, it is proposed that the spillover of species such as H adatoms and CHx radicals after activation at Ru sites into the CeO2 supports and lattice O mobility may be slightly faster in the case of NCs. During the oxidation step, the NR and NC materials showed increased H2 production by a factor of more than 4 when compared to Ni based perovskite material. 
    more » « less
  5. Photonic curing (PC) can facilitate high-speed perovskite solar cell (PSC) manufacturing because it uses high-intensity light pulses to crystallize perovskite films in milliseconds. However, optimizing PC conditions is challenging due to its many variables, and using power conversion efficiency (PCE) as the optimization metric is both time-consuming and labor-intensive. This work presents a machine learning (ML) approach to optimize PC conditions for fabricating methylammonium lead iodide (MAPbI3) films by quantitatively comparing their ultraviolet-visible (UV-vis) absorbance spectra to thermal annealed (TA) films using four similarity metrics. We perform Bayesian optimization coupled with Gaussian process regression (BO-GP) to minimize the similarity metrics. Refining PC conditions using active learning based on BO-GP models, we achieve a PC MAPbI3 film with an absorbance spectrum closely matching a TA reference film, which is further verified by its crystalline and morphological properties. Thus, we demonstrate that the UV-vis absorption spectrum can accurately proxy film quality. Additionally, we use an AI-based segmentation model for a more efficient grain size analysis. However, when we use the optimized PC condition to fabricate PSCs, we find that interaction between MAPbI3 and the hole transport layer (HTL) during PC critically degrades the PSC performance. By adding a buffer layer between the HTL and MAPbI3, the optimized PC PSCs produce a champion PCE of 11.8%, comparable to the TA reference of 11.7%. Using UV-vis similarity metrics instead of device PCE as the objective in our BO-GP method accelerates the optimization of PC processing conditions for MAPbI3 films. 
    more » « less