skip to main content

Title: Origami Biosystems: 3D Assembly Methods for Biomedical Applications

Conventional assembly of biosystems has relied on bottom‐up techniques, such as directed aggregation, or top‐down techniques, such as layer‐by‐layer integration, using advanced lithographic and additive manufacturing processes. However, these methods often fail to mimic the complex three dimensional (3D) microstructure of naturally occurring biomachinery, cells, and organisms regarding assembly throughput, precision, material heterogeneity, and resolution. Pop‐up, buckling, and self‐folding methods, reminiscent of paper origami, allow the high‐throughput assembly of static or reconfigurable biosystems of relevance to biosensors, biomicrofluidics, cell and tissue engineering, drug delivery, and minimally invasive surgery. The universal principle in these assembly methods is the engineering of intrinsic or extrinsic forces to cause local or global shape changes via bending, curving, or folding resulting in the final 3D structure. The forces can result from stresses that are engineered either during or applied externally after synthesis or fabrication. The methods facilitate the high‐throughput assembly of biosystems in simultaneously micro or nanopatterned and layered geometries that can be challenging if not impossible to assemble by alternate methods. The authors classify methods based on length scale and biologically relevant applications; examples of significant advances and future challenges are highlighted.

more » « less
Award ID(s):
1709349 1635443
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Biosystems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As miniaturization of electrical and mechanical components used in modern technology progresses, there is an increasing need for high-throughput and low-cost micro-scale assembly techniques. Many current micro-assembly methods are serial in nature, resulting in unfeasibly low throughput. Additionally, the need for increasingly smaller tools to pick and place individual microparts makes these methods cost prohibitive. Alternatively, parallel self-assembly or directed-assembly techniques can be employed by utilizing forces dominant at the micro and nano scales such as electro-kinetic, thermal, and capillary forces. However, these forces are governed by complex equations and often act on microparts simultaneously and competitively, making modeling and simulation difficult. The research in this paper presents a novel phenomenological approach to directed micro-assembly through the use of artificial intelligence to correlate micro-particle movement via dielectrophoretic and electro-osmotic forces in response to varying frequency of an applied non-uniform electric field. This research serves as a proof of concept of the application of artificial intelligence to create high yield low-cost micro-assembly techniques, which will prove useful in a variety of fields including micro-electrical-mechanical systems (MEMS), biotechnology, and tissue engineering. 
    more » « less
  2. Abstract

    3D structures with complex geometric features at the microscale, such as microparticles and microfibers, have promising applications in biomedical engineering, self‐assembly, and photonics. Fabrication of complex 3D microshapes at scale poses a unique challenge; high‐resolution methods such as two‐photon‐polymerization have print speeds too low for high‐throughput production, while top‐down approaches for bulk processing using microfabricated template molds have limited control of microstructure geometries over multiple axes. Here, a method for microshape fabrication is presented that combines a thermally drawn transparent fiber template with a masked UV‐photopolymerization approach to enable biaxial control of microshape fabrication. Using this approach, high‐resolution production of complex microshapes not producible using alternative methods is demonstrated, such as octahedrons, dreidels, and axially asymmetric fibers, at throughputs as high as 825 structures/minute. Finally, the fiber template is functionalized with conductive electrodes to enable hierarchical subparticle localization using dielectrophoretic forces.

    more » « less
  3. Abstract

    Self‐folding broadly refers to the assembly of 3D structures by bending, curving, and folding without the need for manual or mechanized intervention. Self‐folding is scientifically interesting because self‐folded structures, from plant leaves to gut villi to cerebral gyri, abound in nature. From an engineering perspective, self‐folding of sub‐millimeter‐sized structures addresses major hurdles in nano‐ and micro‐manufacturing. This review focuses on self‐folding using surface tension or capillary forces derived from the minimization of liquid interfacial area. Due to favorable downscaling with length, at small scales capillary forces become extremely large relative to forces that scale with volume, such as gravity or inertia, and to forces that scale with area, such as elasticity. The major demonstrated classes of capillary force assisted self‐folding are discussed. These classes include the use of rigid or soft and micro‐ or nano‐patterned precursors that are assembled using a variety of liquids such as water, molten polymers, and liquid metals. The authors outline the underlying physics and highlight important design considerations that maximize rigidity, strength, and yield of the assembled structures. They also discuss applications of capillary self‐folding structures in engineering and medicine. Finally, the authors conclude by summarizing standing challenges and describing future trends.

    more » « less
  4. Jabbari, Esmaiel (Ed.)
    This study presents novel biocompatible Polydimethylsiloxane (PDMS)-based micromechanical tweezers (μTweezers) capable of the stiffness characterization and manipulation of hydrogel-based organoids. The system showed great potential for complementing established mechanical characterization methods such as Atomic Force Microscopy (AFM), parallel plate compression (PPC), and nanoindentation, while significantly reducing the volume of valuable hydrogels used for testing. We achieved a volume reduction of ~0.22 μl/sample using the μTweezers vs. ~157 μl/sample using the PPC, while targeting high-throughput measurement of widely adopted micro-mesoscale (a few hundred μm-1500 μm) 3D cell cultures. The μTweezers applied and measured nano-millinewton forces through cantilever’ deflection with high linearity and tunability for different applications; the assembly is compatible with typical inverted optical microscopes and fit on standard tissue culture Petri dishes, allowing mechanical compression characterization of arrayed 3D hydrogel-based organoids in a high throughput manner. The average achievable output per group was 40 tests per hour, where 20 organoids and 20 reference images in one 35 mm petri dish were tested, illustrating efficient productivity to match the increasing demand on 3D organoids’ applications. The changes in stiffness of collagen I hydrogel organoids in four conditions were measured, with ovarian cancer cells (SKOV3) or without (control). The Young’s modulus of the control group (Control—day 0, E = 407± 146, n = 4) measured by PPC was used as a reference modulus, where the relative elastic compressive modulus of the other groups based on the stiffness measurements was also calculated (control-day 0, E = 407 Pa), (SKOV3-day 0, E = 318 Pa), (control-day 5, E = 528 Pa), and (SKOV3-day 5, E = 376 Pa). The SKOV3-embedded hydrogel-based organoids had more shrinkage and lowered moduli on day 0 and day 5 than controls, consistently, while SKOV3 embedded organoids increased in stiffness in a similar trend to the collagen I control from day 0 to day 5. The proposed method can contribute to the biomedical, biochemical, and regenerative engineering fields, where bulk mechanical characterization is of interest. The μTweezers will also provide attractive design and application concepts to soft membrane-micro 3D robotics, sensors, and actuators. 
    more » « less
  5. Abstract

    Origami and kirigami, the ancient techniques for making paper works of art, also provide inspiration for routes to structural platforms in engineering applications, including foldable solar panels, retractable roofs, deployable sunshields, and many others. Recent work demonstrates the utility of the methods of origami/kirigami and conceptually related schemes in cutting, folding, and buckling in the construction of devices for emerging classes of technologies, with examples in mechanical/optical metamaterials, stretchable/conformable electronics, micro/nanoscale biosensors, and large‐amplitude actuators. Specific notable progress is in the deployment of functional materials such as single‐crystal silicon, shape memory polymers, energy‐storage materials, and graphene into elaborate 3D micro and nanoscale architectures. This review highlights some of the most important developments in this field, with a focus on routes to assembly that apply across a range of length scales and with advanced materials of relevance to practical applications.

    more » « less