ABSTRACT The gut microbiome impacts bone mass, which implies a disruption to bone homeostasis. However, it is not yet clear how the gut microbiome affects the regulation of bone mass and bone quality. We hypothesized that germ‐free (GF) mice have increased bone mass and decreased bone toughness compared with conventionally housed mice. We tested this hypothesis using adult (20‐ to 21‐week‐old) C57BL/6J GF and conventionally raised female and male mice (n = 6–10/group). Trabecular microarchitecture and cortical geometry were measured from micro–CT of the femur distal metaphysis and cortical midshaft. Whole‐femur strength and estimated material properties were measured using three‐point bending and notched fracture toughness. Bone matrix properties were measured for the cortical femur by quantitative back‐scattered electron imaging and nanoindentation, and, for the humerus, by Raman spectroscopy and fluorescent advanced glycation end product (fAGE) assay. Shifts in cortical tissue metabolism were measured from the contralateral humerus. GF mice had reduced bone resorption, increased trabecular bone microarchitecture, increased tissue strength and decreased whole‐bone strength that was not explained by differences in bone size, increased tissue mineralization and fAGEs, and altered collagen structure that did not decrease fracture toughness. We observed several sex differences in GF mice, most notably for bone tissue metabolism. Male GF mice had a greater signature of amino acid metabolism, and female GF mice had a greater signature of lipid metabolism, exceeding the metabolic sex differences of the conventional mice. Together, these data demonstrate that the GF state in C57BL/6J mice alters bone mass and matrix properties but does not decrease bone fracture resistance. © 2023 The Authors.Journal of Bone and Mineral Researchpublished by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
more »
« less
Low temperature decreases bone mass in mice: Implications for humans
Abstract ObjectivesHumans exhibit significant ecogeographic variation in bone size and shape. However, it is unclear how significantly environmental temperature influences cortical and trabecular bone, making it difficult to recognize adaptation versus acclimatization in past populations. There is some evidence that cold‐induced bone loss results from sympathetic nervous system activation and can be reduced by nonshivering thermogenesis (NST) via uncoupling protein (UCP1) in brown adipose tissue (BAT). Here we test two hypotheses: (1) low temperature induces impaired cortical and trabecular bone acquisition and (2) UCP1, a marker of NST in BAT, increases in proportion to degree of low‐temperature exposure. MethodsWe housed wildtype C57BL/6J male mice in pairs at 26 °C (thermoneutrality), 22 °C (standard), and 20 °C (cool) from 3 weeks to 6 or 12 weeks of age with access to food and water ad libitum (N= 8/group). ResultsCool housed mice ate more but had lower body fat at 20 °C versus 26 °C. Mice at 20 °C had markedly lower distal femur trabecular bone volume fraction, thickness, and connectivity density and lower midshaft femur cortical bone area fraction versus mice at 26 °C (p< .05 for all). UCP1 expression in BAT was inversely related to temperature. DiscussionThese results support the hypothesis that low temperature was detrimental to bone mass acquisition. Nonshivering thermogenesis in brown adipose tissue increased in proportion to low‐temperature exposure but was insufficient to prevent bone loss. These data show that chronic exposure to low temperature impairs bone architecture, suggesting climate may contribute to phenotypic variation in humans and other hominins.
more »
« less
- Award ID(s):
- 1638553
- PAR ID:
- 10074489
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- American Journal of Physical Anthropology
- Volume:
- 167
- Issue:
- 3
- ISSN:
- 0002-9483
- Page Range / eLocation ID:
- p. 557-568
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract ObjectivesLittle is known about how ilium cortical bone responds to loading. Using a mouse model, this study presents data testing the hypothesis that iliac cross‐sectional properties are altered in response to increased activity. Materials and MethodsThe sample derives from lines of High Runner (HR) mice bred for increased wheel‐running activity. Four treatment groups of female mice were tested: non‐selected control lines housed without (N = 19) and with wheels (N = 20), and HR mice housed without (N = 17) and with wheels (N = 18) for 13 weeks beginning at weaning. Each pelvis was μCT‐scanned, cross‐sectional properties (cortical area—Ct.Ar, total area—Tt.Ar, polar moment of area, and polar section modulus) were determined from the ilium midshaft, and robusticity indices (ratio of the square root ofCt.ArorTt.Arto caudal ilium length) were calculated. Mixed models were implemented with linetype, wheel access, and presence of the mini‐muscle phenotype as fixed effects, replicate line nested within linetype as a random effect, and body mass as a covariate. ResultsResults demonstrate that the mouse ilium morphologically resembles a long bone in cross section. Body mass and the mini‐muscle phenotype were significant predictors of iliac cross‐sectional properties. Wheel access only had a statistically significant effect onCt.Arand its robusticity index, with greater values in mice with wheel access. DiscussionThese results suggest that voluntary exercise increases cortical area, but does not otherwise strengthen the ilium in these mice, corroborating previous studies on the effect of increased wheel‐running activity on femoral and humeral cross‐sectional properties in these mice.more » « less
-
Abstract ObjectiveThis project investigates trabecular bone structural variation in the proximal humerus and femur of hunter‐gatherer, mixed‐strategy agricultural, medieval, and human groups to address three questions: (a) What is the extent of trabecular bone structural variation in the humerus and femur between populations with different inferred activity levels? (b) How does variation in the proximal humerus relate to variation in the proximal femur? (c) Are trabecular bone microstructural variables sexually dimorphic? MethodsThe proximal humerus and femur of 73 adults from five human groups with distinct subsistence strategies were scanned using a micro‐computed tomography system. Centralized volumes of interest within the humeral and femoral heads were extracted and analyzed to quantify bone volume fraction, trabecular thickness, trabecular separation, connectivity density, degree of anisotropy, and bone surface density. ResultsIn the humerus and femur, groups with the highest inferred activity levels have higher bone volume fraction and trabecular thickness, and lower bone surface density than those with lower inferred activity levels. However, the humeral pattern does not exactly mirror that of the femur, which demonstrates a steeper gradient of difference between subsistence groups. No significant differences were identified in trabecular separation. No consistent patterns of sexual dimorphism were present in the humerus or femur. ConclusionsReduced skeletal robusticity of proximal humeral and femoral trabecular bone corresponds with reduced activity level inferred from subsistence strategy. However, human trabecular bone structural variation is complex and future work should explore how other factors (diet, climate, genetics, disease load, etc.), in addition to activity, influence bone structural variation.more » « less
-
Abstract ObjectivesVariation in trabecular and cortical bone properties is often used to infer habitual behavior in the past. However, the structures of both types of bone are rarely considered together and may even contradict each other in functional interpretations. We examine trabecular and cortical bone properties in various athletes and sedentary controls to clarify the associations between combinations of cortical and trabecular bone properties and various loading modalities. Materials and methodsWe compare trabecular and cortical bone properties using peripheral quantitative computed tomography scans of the tibia between groups of 83 male athletes (running, hockey, swimming, cricket) and sedentary controls using Bayesian multilevel models. We quantify midshaft cortical bone rigidity and area (J, CA), midshaft shape index (Imax/Imin), and mean trabecular bone mineral density (BMD) in the distal tibia. ResultsAll groups show unique combinations of biomechanical properties. Cortical bone rigidity is high in sports that involve impact loading (cricket, running, hockey) and low in nonimpact loaded swimmers and controls. Runners have more anteroposteriorly elliptical midshafts compared to other groups. Interestingly, all athletes have greater trabecular BMD compared to controls, but do not differ credibly among each other. DiscussionResults suggest that cortical midshaft hypertrophy is associated with impact loading while trabecular BMD is positively associated with both impact and nonimpact loading. Midshaft shape is associated with directionality of loading. Individuals from the different categories overlap substantially, but group means differ credibly, suggesting that nuanced group‐level inferences of habitual behavior are possible when combinations of trabecular and cortical bone are analyzed.more » « less
-
Abstract Western diets are becoming increasingly common around the world. Western diets have high omega 6 (ω-6) and omega 3 (ω-3) fatty acids and are linked to bone loss in humans and animals. Dietary fats are not created equal; therefore, it is vital to understand the effects of specific dietary fats on bone. We aimed to determine how altering the endogenous ratios of ω-6:ω-3 fatty acids impacts bone accrual, strength, and fracture toughness. To accomplish this, we used the Fat-1 transgenic mice, which carry a gene responsible for encoding a ω-3 fatty acid desaturase that converts ω-6 to ω-3 fatty acids. Male and female Fat-1 positive mice (Fat-1) and Fat-1 negative littermates (WT) were given either a high-fat diet (HFD) or low-fat diet (LFD) at 4 wk of age for 16 wk. The Fat-1 transgene reduced fracture toughness in males. Additionally, male BMD, measured from DXA, decreased over the diet duration for HFD mice. In males, neither HFD feeding nor the presence of the Fat-1 transgene impacted cortical geometry, trabecular architecture, or whole-bone flexural properties, as detected by main group effects. In females, Fat-1-LFD mice experienced increases in BMD compared to WT-LFD mice; however, cortical area, distal femur trabecular thickness, and cortical stiffness were reduced in Fat-1 mice compared to pooled WT controls. However, reductions in stiffness were caused by a decrease in bone size and were not driven by changes in material properties. Together, these results demonstrate that the endogenous ω-6:ω-3 fatty acid ratio influences bone material properties in a sex-dependent manner. In addition, Fat-1 mediated fatty acid conversion was not able to mitigate the adverse effects of HFD on bone strength and accrual.more » « less
An official website of the United States government
