skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Accelerating nonlinear interactions in tapered multimode fibers
We theoretically and experimentally demonstrate that the processes of multimode soliton fission and dispersive wave generation in parabolic-index multimode fibers, are substantially altered when the rate of intermodal nonlinear interactions is progressively increased during propagation.  more » « less
Award ID(s):
1711230
NSF-PAR ID:
10074937
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Conference on Laser and Electro-Optics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Advancements in computational capabilities along with the possibility of accessing high power levels have stimulated a reconsideration of multimode fibers. Multimode fibers are nowadays intensely pursued in terms of addressing longstanding issues related to information bandwidth and implementing new classes of high-power laser sources. In addition, the multifaceted nature of this platform, arising from the complexity associated with hundreds and thousands of interacting modes, has provided a fertile ground for observing novel physical effects. However, this same complexity has introduced a formidable challenge in understanding these newly emerging physical phenomena. Here, we provide a comprehensive theory capable of explaining the distinct Cherenkov radiation lines produced during multimode soliton fission events taking place in nonlinear multimode optical fibers. Our analysis reveals that this broadband dispersive wave emission is a direct byproduct of the nonlinear merging of the constituent modes comprising the resulting multimode soliton entities, and is possible in both the normal and anomalous dispersive regions. These theoretical predictions are experimentally and numerically corroborated in both parabolic and step-index multimode silica waveguides. Effects arising from different soliton modal compositions can also be accounted for, using this model. At a more fundamental level, our results are expected to further facilitate our understanding of the underlying physics associated with these complex “many-body” nonlinear processes. 
    more » « less
  2. Light transport in a highly multimode fiber exhibits complex behavior in space, time, frequency, and polarization, especially in the presence of mode coupling. The newly developed techniques of spatial wavefront shaping turn out to be highly suitable to harness such enormous complexity: a spatial light modulator enables precise characterization of field propagation through a multimode fiber, and by adjusting the incident wavefront it can accurately tailor the transmitted spatial pattern, temporal profile, and polarization state. This unprecedented control leads to multimode fiber applications in imaging, endoscopy, optical trapping, and microfabrication. Furthermore, the output speckle pattern from a multimode fiber encodes spatial, temporal, spectral, and polarization properties of the input light, allowing such information to be retrieved from spatial measurements only. This article provides an overview of recent advances and breakthroughs in controlling light propagation in multimode fibers, and discusses newly emerging applications.

     
    more » « less
  3. Abstract

    Coherent multimode instabilities are responsible for several phenomena of recent interest in semiconductor lasers, such as the generation of frequency combs and ultrashort pulses. These techonologies have proven disruptive in optical telecommunications and spectroscopy applications. While the standard Maxwell-Bloch equations (MBEs) encompass such complex lasing phenomena, their integration is computationally expensive and offers limited analytical insight. In this paper, we demonstrate an efficient spectral approach to the simulation of multimode instabilities via a quantitative analysis of the instability of single-frequency lasing in ring lasers, referred to as the Lorenz-Haken (LH) instability or the RNGH instability in distinct parameter regimes. Our approach, referred to as CFTD, uses generally non-Hermitian Constant Flux modes to obtain projected Time Domain equations. CFTD provides excellent agreement with finite-difference integration of the MBEs across a wide range of parameters in regimes of non-stationary inversion, including frequency comb formation and spatiotemporal chaos. We also develop a modal linear stability analysis using CFTD to efficiently predict multimode instabilities in lasers. The combination of numerical accuracy, speedup, and semi-analytic insight across a variety of dynamical regimes make the CFTD approach ideal to analyze multimode instabilities in lasers, especially in more complex geometries or coupled laser arrays.

     
    more » « less
  4. Multimode fibers are explored widely for optical communication, spectroscopy, imaging, and sensing applications. Here we demonstrate a single-shot full-field temporal measurement technique based on a multimode fiber. The complex spatiotemporal speckle field is created by a reference pulse propagating through the fiber, and it interferes with a signal pulse. From the time-integrated interference pattern, both the amplitude and the phase of the signal are retrieved. The simplicity and high sensitivity of our scheme illustrate the potential of multimode fibers as versatile and multi-functional sensors.

     
    more » « less
  5. Abstract

    Low propagation loss in high confinement waveguides is critical for chip‐based nonlinear photonics applications. Sophisticated fabrication processes which yield sub‐nm roughness are generally needed to reduce scattering points at the waveguide interfaces to achieve ultralow propagation loss. Here, ultralow propagation loss is shown by shaping the mode using a highly multimode structure to reduce its overlap with the waveguide interfaces, thus relaxing the fabrication processing requirements. Microresonators with intrinsic quality factors (Q) of 31.8 ± 4.4 million are experimentally demonstrated. Although the microresonators support ten transverse modes only the fundamental mode is excited and no higher order modes are observed when using nonlinear adiabatic bends. A record‐low threshold pump power of 73 µW for parametric oscillation is measured and a broadband, almost octave spanning single‐soliton frequency comb without any signatures of higher order modes in the spectrum spanning from 1097 to 2040 nm (126 THz) is generated in the multimode microresonator. This work provides a design method that can be applied to different material platforms to achieve and use ultrahigh‐Qmultimode microresonators.

     
    more » « less