This article introduces a model-based approach for training feedback controllers for an autonomous agent operating in a highly non-linear (albeit deterministic) environment. We desire the trained policy to ensure that the agent satisfies specific task objectives and safety constraints, both expressed in Discrete-Time Signal Temporal Logic (DT-STL). One advantage for reformulation of a task via formal frameworks, like DT-STL, is that it permits quantitative satisfaction semantics. In other words, given a trajectory and a DT-STL formula, we can compute therobustness, which can be interpreted as an approximate signed distance between the trajectory and the set of trajectories satisfying the formula. We utilize feedback control, and we assume a feed forward neural network for learning the feedback controller. We show how this learning problem is similar to training recurrent neural networks (RNNs), where the number of recurrent units is proportional to the temporal horizon of the agent’s task objectives. This poses a challenge: RNNs are susceptible to vanishing and exploding gradients, and naïve gradient descent-based strategies to solve long-horizon task objectives thus suffer from the same problems. To address this challenge, we introduce a novel gradient approximation algorithm based on the idea of dropout or gradient sampling. One of the main contributions is the notion ofcontroller network dropout, where we approximate the NN controller in several timesteps in the task horizon by the control input obtained using the controller in a previous training step. We show that our control synthesis methodology can be quite helpful for stochastic gradient descent to converge with less numerical issues, enabling scalable back-propagation over longer time horizons and trajectories over higher-dimensional state spaces. We demonstrate the efficacy of our approach on various motion planning applications requiring complex spatio-temporal and sequential tasks ranging over thousands of timesteps. 
                        more » 
                        « less   
                    
                            
                            Duality-Based Nested Controller Synthesis from STL Specifications for Stochastic Linear Systems
                        
                    
    
            We propose an automatic synthesis technique to generate provably correct controllers of stochastic linear dynamical systems for Signal Temporal Logic (STL) specifications. While formal synthesis problems can be directly formulated as exists-forall constraints, the quantifier alternation restricts the scalability of such an approach. We use the duality between a system and its proof of correctness to partially alleviate this challenge. We decompose the controller synthesis into two subproblems, each addressing orthogonal concerns - stabilization with respect to the noise, and meeting the STL specification. The overall controller is a nested controller comprising of the feedback controller for noise cancellation and an open loop controller for STL satisfaction. The correct-by-construction compositional synthesis of this nested controller relies on using the guarantees of the feedback controller instead of the controller itself. We use a linear feedback controller as the stabilizing controller for linear systems with bounded additive noise and over-approximate its ellipsoid stability guarantee with a polytope. We then use this over-approximation to formulate a mixed-integer linear programming (MILP) problem to synthesize an open-loop controller that satisfies STL specifications. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10075839
- Date Published:
- Journal Name:
- 16th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2018
- Page Range / eLocation ID:
- 235-251
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We present a verification-based learning framework VEL that synthesizes safe programmatic controllers for environments with continuous state and action spaces. The key idea is the integration of program reasoning techniques into controller training loops. VEL performs abstraction-based program verification to reason about a programmatic controller and its environment as a closed-loop system. Based on a novel verification-guided synthesis loop for training, VEL minimizes the amount of safety violation in the proof space of the system, which approximates the worst-case safety loss, using gradient-descent style optimization. Experimental results demonstrate the substantial benefits of leveraging verification feedback for synthesizing provably correct controllers.more » « less
- 
            null (Ed.)We consider abstraction-based design of output-feedback controllers for dynamical systemswith a finite set of inputs and outputs against specifications in linear-time temporal logic. The usual procedure for abstraction-based controller design (ABCD) first constructs a finite-state abstraction of the underlying dynamical system, and second, uses reactive synthesis techniques to compute an abstract state-feedback controller on the abstraction. In this context, our contribution is two-fold: (I) we define a suitable relation between the original systemand its abstractionwhich characterizes the soundness and completeness conditions for an abstract state-feedback controller to be refined to a concrete output-feedback controller for the original system, and (II) we provide an algorithm to compute a sound finite-state abstraction fulfilling this relation. Our relation generalizes feedback-refinement relations fromABCD with state-feedback. Our algorithm for constructing sound finitestate abstractions is inspired by the simultaneous reachability and bisimulation minimization algorithm of Lee and Yannakakis. We lift their idea to the computation of an observation-equivalent system and show how sound abstractions can be obtained by stopping this algorithm at any point. Additionally, our new algorithm produces a realization of the topological closure of the input/output behavior of the original system if it is finite state realizable.more » « less
- 
            We present an approach for the synthesis and verification of neural network controllers for closed loop dynamical systems, modelled as an ordinary differential equation. Feedforward neural networks are ubiquitous when it comes to approximating functions, especially in the machine learning literature. The proposed verification technique tries to construct an over-approximation of the system trajectories using a combination of tools, such as, Sherlock and Flow*. In addition to computing reach sets, we incorporate counter examples or bad traces into the synthesis phase of the controller as well. We go back and forth between verification and counter example generation until the system outputs a fully verified controller, or the training fails to terminate in a neural network which is compliant with the desired specifications. We demonstrate the effectiveness of our approach over a suite of benchmarks ranging from 2 to 17 variables.more » « less
- 
            The wide availability of data coupled with the computational advances in artificial intelligence and machine learning promise to enable many future technologies such as autonomous driving. While there has been a variety of successful demonstrations of these technologies, critical system failures have repeatedly been reported. Even if rare, such system failures pose a serious barrier to adoption without a rigorous risk assessment. This article presents a framework for the systematic and rigorous risk verification of systems. We consider a wide range of system specifications formulated in signal temporal logic (STL) and model the system as a stochastic process, permitting discrete-time and continuous-time stochastic processes. We then define the STL robustness risk as the risk of lacking robustness against failure . This definition is motivated as system failures are often caused by missing robustness to modeling errors, system disturbances, and distribution shifts in the underlying data generating process. Within the definition, we permit general classes of risk measures and focus on tail risk measures such as the value-at-risk and the conditional value-at-risk. While the STL robustness risk is in general hard to compute, we propose the approximate STL robustness risk as a more tractable notion that upper bounds the STL robustness risk. We show how the approximate STL robustness risk can accurately be estimated from system trajectory data. For discrete-time stochastic processes, we show under which conditions the approximate STL robustness risk can even be computed exactly. We illustrate our verification algorithm in the autonomous driving simulator CARLA and show how a least risky controller can be selected among four neural network lane-keeping controllers for five meaningful system specifications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    