Accurate prediction of traffic flow dynamics is a key step towards effective congestion mitigation strategies. The dynamic nature of traffic flow and lack of comprehensive data coverage (e.g., availability of data at loop detector locations), however, have historically prevented accurate traffic state prediction, leading to the widespread utilization of reactive congestion mitigation strategies. The introduction of connected automated vehicles provides an opportunity to address this challenge. These vehicles rely on trajectory-level prediction of their surrounding traffic environment to plan a safe and efficient path. This study proposes a methodology to utilize the outcome of such predictions to estimate the future traffic state. Moreover, the same approach can be applied to data from connected vehicles for traffic state prediction. Since in many driving scenarios, more than one maneuver is feasible, it is more logical to predict the location of the vehicles in a probabilistic manner based on the probability of different maneuvers. The key contribution of this study is to introduce a methodology to convert such probabilistic trajectory predictions to aggregate traffic state predictions (i.e., flow, space–mean speed, and density). The key advantage of this approach (over directly predicting traffic state based on aggregated traffic data) is its ability to capture the interactions among vehicles to increase the accuracy of the prediction. The down side of this approach, on the other hand, is that any increase in the prediction horizon reduces the accuracy of prediction (due to the uncertainty in the vehicles’ interactions and the increase in the possibility of different maneuvers). At the microscopic level, this study proposes a probability based version of the time–space diagram, and at the macroscopic level, this study proposes probabilistic estimates of flow, density, and space–mean speed using the trajectory-level predictions. To evaluate the effectiveness of the proposed approach in predicting traffic state, the mean absolute percentage error for each probabilistic macroscopic estimate is evaluated on multiple subsamples of the NGSIM US-101 and I-80 data sets. Moreover, while introducing this novel traffic state prediction approach, this study shows that the fundamental relation among the average traffic flow, density, and space–mean speed is still valid under the probabilistic formulations of this study.
more »
« less
Exploiting Learning and Scenario-Based Specification Languages for the Verification and Validation of Highly Automated Driving
We propose a series of methods based on learning key structural properties from traffic data-basis and on statistical model checking, ultimately leading to the construction of a scenario catalogue capturing requirements for controlling criticality for highly autonomous vehicles. We sketch underlying mathematical foundations which allow to derive formal confidence levels that vehicles tested by such a scenario catalogue will maintain the required control of criticality in real traffic matching the probability distributions of key parameters of data recorded in the reference data base employed for this process.
more »
« less
- Award ID(s):
- 1743772
- PAR ID:
- 10076294
- Date Published:
- Journal Name:
- 2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Automated vehicles are expected to become a part of the road traffic in the near future. This upcoming change raises concerns on how human road users, e.g., cyclists or pedestrians, would interact with them to ensure safe communication on the road. Previous work focused primarily on the scenario in which a young adult with- out impairments crosses a street in front of an automated vehicle. Several road user groups, such as children, seniors, or people with special needs, in roles of pedestrians and cyclists, are not consid- ered in this scenario. On top of this, cultural differences are rarely considered. To ensure that future traffic is safe and accessible for all citizens, we aim to address inclusive communication between automated vehicles and vulnerable road users. In this workshop, we will discuss and exchange methods, tools, and scenarios applicable for inclusive communication, identify the most relevant research gaps, and connect people for future collaborations.more » « less
-
Autonomous driving systems (ADS) require extensive testing and validation before deployment. However, it is tedious and time-consuming to construct traffic scenarios for ADS testing. In this paper, we propose TrafficComposer, a multi-modal traffic scenario construction approach for ADS testing. TrafficComposer takes as input a natural language (NL) description of a desired traffic scenario and a complementary traffic scene image. Then, it generates the corresponding traffic scenario in a simulator, such as CARLA and LGSVL. Specifically, TrafficComposer integrates high-level dynamic information about the traffic scenario from the NL description and intricate details about the surrounding vehicles, pedestrians, and the road network from the image. The information from the two modalities is complementary to each other and helps generate high-quality traffic scenarios for ADS testing. On a benchmark of 120 traffic scenarios, TrafficComposer achieves 97.0% accuracy, outperforming the best-performing baseline by 7.3%. Both direct testing and fuzz testing experiments on six ADSs prove the bug detection capabilities of the traffic scenarios generated by TrafficComposer. These scenarios can directly discover 37 bugs and help two fuzzing methods find 33%–124% more bugs serving as initial seeds.more » « less
-
A popular metric for measuring progress in autonomous driving has been the "miles per intervention". This is nowhere near a sufficient metric and it does not allow for a fair comparison between the capabilities of two autonomous vehicles (AVs). In this paper we propose Scenario2Vector - a Scenario Description Language (SDL) based embedding for traffic situations that allows us to automatically search for similar traffic situations from large AV data-sets. Our SDL embedding distills a traffic situation experienced by an AV into its canonical components - actors, actions, and the traffic scene. We can then use this embedding to evaluate similarity of different traffic situations in vector space. We have also created a first of its kind, Traffic Scenario Similarity (TSS) dataset which contains human ranking annotations for the similarity between traffic scenarios. Using the TSS data, we compare our SDL embedding -with textual caption based search methods such as Sentence2Vector. We find that Scenario2Vector outperforms Sentence2Vector by 13% ; and is a promising step towards enabling fair comparisons among AVs by inspecting how they perform in similar traffic situations. We hope that Scenario2Vector can have a similar impact to the AV community that Word2Vec/Sent2Vec have had in Natural Language Processing datasets.more » « less
-
The key concept for safe and efficient traffic management for Unmanned Aircraft Systems (UAS) is the notion of operation volume (OV). An OV is a 4-dimensional block of airspace and time, which can express an aircraft’s intent, and can be used for planning, de-confliction, and traffic management. While there are several high-level simulators for UAS Traffic Management (UTM), we are lacking a frame- work for creating, manipulating, and reasoning about OVs for heterogeneous air vehicles. In this paper, we address this and present SkyTrakx—a software toolkit for simulation and verification of UTM scenarios based on OVs. First, we illustrate a use case of SkyTrakx by presenting a specific air traffic coordination protocol. This protocol communicates OVs between participating aircraft and an airspace manager for traffic routing. We show how existing formal verification tools, Dafny and Dione, can assist in automatically checking key properties of the protocol. Second, we show how the OVs can be computed for heterogeneous air vehicles like quadcopters and fixed-wing aircraft using another verification technique, namely reachability analysis. Finally, we show that SkyTrakx can be used to simulate complex scenarios involving heterogeneous vehicles, for testing and performance evaluation in terms of workload and response delays analysis. Our experiments delineate the trade-off between performance and workload across different strategies for generating OVs.more » « less
An official website of the United States government

