skip to main content


Title: Trimmed serendipity finite element differential forms
We introduce the family of trimmed serendipity finite element differential form spaces, defined on cubical meshes in any number of dimensions, for any polynomial degree, and for any form order. The relation between the trimmed serendipity family and the (non-trimmed) serendipity family developed by Arnold and Awanou [Math. Comp. 83(288) 2014] is analogous to the relation between the trimmed and (non-trimmed) polynomial finite element differential form families on simplicial meshes from finite element exterior calculus. We provide degrees of freedom in the general setting and prove that they are unisolvent for the trimmed serendipity spaces. The sequence of trimmed serendipity spaces with a fixed polynomial order r provides an explicit example of a system described by Christiansen and Gillette [ESAIM:M2AN 50(3) 2016], namely, a minimal compatible finite element system on squares or cubes containing order r-1 polynomial differential forms.  more » « less
Award ID(s):
1522289
NSF-PAR ID:
10076785
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Mathematics of Computation
ISSN:
0025-5718
Page Range / eLocation ID:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an implementation of the trimmed serendipity finite element family, using the open-source finite element package Firedrake. The new elements can be used seamlessly within the software suite for problems requiring H 1 , H (curl), or H (div)-conforming elements on meshes of squares or cubes. To test how well trimmed serendipity elements perform in comparison to traditional tensor product elements, we perform a sequence of numerical experiments including the primal Poisson, mixed Poisson, and Maxwell cavity eigenvalue problems. Overall, we find that the trimmed serendipity elements converge, as expected, at the same rate as the respective tensor product elements, while being able to offer significant savings in the time or memory required to solve certain problems. 
    more » « less
  2. Abstract

    We construct new families ofdirectserendipity anddirectmixed finite elements on general planar, strictly convex polygons that areH1andH(div) conforming, respectively, and possess optimal order of accuracy for any order. They have a minimal number of degrees of freedom subject to the conformity and accuracy constraints. The name arises because the shape functions are defineddirectlyon the physical elements, i.e., without using a mapping from a reference element. The finite element shape functions are defined to be the full spaces of scalar or vector polynomials plus a space of supplemental functions. The direct serendipity elements are the precursors of the direct mixed elements in a de Rham complex. The convergence properties of the finite elements are shown under a regularity assumption on the shapes of the polygons in the mesh, as well as some mild restrictions on the choices one can make in the construction of the supplemental functions. Numerical experiments on various meshes exhibit the performance of these new families of finite elements.

     
    more » « less
  3. We construct conforming finite element elasticity complexes on Worsey–Farin splits in three dimensions. Spaces for displacement, strain, stress, and the load are connected in the elasticity complex through the differential operators representing deformation, incompatibility, and divergence. For each of these component spaces, a corresponding finite element space on Worsey–Farin meshes is exhibited. Unisolvent degrees of freedom are developed for these finite elements, which also yields commuting (cochain) projections on smooth functions. A distinctive feature of the spaces in these complexes is the lack of extrinsic supersmoothness at subsimplices of the mesh. Notably, the complex yields the first (strongly) symmetric stress finite element with no vertex or edge degrees of freedom in three dimensions. Moreover, the lowest order stress space uses only piecewise linear functions which is the lowest feasible polynomial degree for the stress space.

     
    more » « less
  4. Abstract The classical serendipity and mixed finite element spaces suffer from poor approximation on nondegenerate, convex quadrilaterals. In this paper, we develop families of direct serendipity and direct mixed finite element spaces, which achieve optimal approximation properties and have minimal local dimension. The set of local shape functions for either the serendipity or mixed elements contains the full set of scalar or vector polynomials of degree r , respectively, defined directly on each element (i.e., not mapped from a reference element). Because there are not enough degrees of freedom for global $$H^1$$ H 1 or $$H(\text {div})$$ H ( div ) conformity, exactly two supplemental shape functions must be added to each element when $$r\ge 2$$ r ≥ 2 , and only one when $$r=1$$ r = 1 . The specific choice of supplemental functions gives rise to different families of direct elements. These new spaces are related through a de Rham complex. For index $$r\ge 1$$ r ≥ 1 , the new families of serendipity spaces $${\mathscr {DS}}_{r+1}$$ DS r + 1 are the precursors under the curl operator of our direct mixed finite element spaces, which can be constructed to have reduced or full $$H(\text {div})$$ H ( div ) approximation properties. One choice of direct serendipity supplements gives the precursor of the recently introduced Arbogast–Correa spaces (SIAM J Numer Anal 54:3332–3356, 2016. 10.1137/15M1013705 ). Other fully direct serendipity supplements can be defined without the use of mappings from reference elements, and these give rise in turn to fully direct mixed spaces. Our development is constructive, so we are able to give global bases for our spaces. Numerical results are presented to illustrate their properties. 
    more » « less
  5. Abstract We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart–Thomas, and Brezzi–Douglas–Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties. 
    more » « less