We develop a multipoint stress mixed finite element method for linear elasticity with weak stress symmetry on quadrilateral grids, which can be reduced to a symmetric and positive definite cell centered system. The method utilizes the lowest order Brezzi–Douglas–Marini finite element spaces for the stress and the trapezoidal quadrature rule in order to localize the interaction of degrees of freedom, which allows for local stress elimination around each vertex. We develop two variants of the method. The first uses a piecewise constant rotation and results in a cell‐centered system for displacement and rotation. The second uses a continuous piecewise bilinear rotation and trapezoidal quadrature rule for the asymmetry bilinear form. This allows for further elimination of the rotation, resulting in a cell‐centered system for the displacement only. Stability and error analysis is performed for both methods. First‐order convergence is established for all variables in their natural norms. A duality argument is employed to prove second order superconvergence of the displacement at the cell centers. Numerical results are presented in confirmation of the theory.
We construct conforming finite element elasticity complexes on Worsey–Farin splits in three dimensions. Spaces for displacement, strain, stress, and the load are connected in the elasticity complex through the differential operators representing deformation, incompatibility, and divergence. For each of these component spaces, a corresponding finite element space on Worsey–Farin meshes is exhibited. Unisolvent degrees of freedom are developed for these finite elements, which also yields commuting (cochain) projections on smooth functions. A distinctive feature of the spaces in these complexes is the lack of extrinsic supersmoothness at subsimplices of the mesh. Notably, the complex yields the first (strongly) symmetric stress finite element with no vertex or edge degrees of freedom in three dimensions. Moreover, the lowest order stress space uses only piecewise linear functions which is the lowest feasible polynomial degree for the stress space.
more » « less- Award ID(s):
- 1912779
- PAR ID:
- 10480318
- Publisher / Repository:
- ESAIM
- Date Published:
- Journal Name:
- ESAIM: Mathematical Modelling and Numerical Analysis
- Volume:
- 57
- Issue:
- 6
- ISSN:
- 2822-7840
- Page Range / eLocation ID:
- 3373 to 3402
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
A finite element elasticity complex on tetrahedral meshes and the corresponding commutative diagram are devised. The H 1 H^1 conforming finite element is the finite element developed by Neilan for the velocity field in a discrete Stokes complex. The symmetric div-conforming finite element is the Hu-Zhang element for stress tensors. The construction of an H ( inc ) H(\operatorname {inc}) -conforming finite element of minimum polynomial degree 6 6 for symmetric tensors is the focus of this paper. Our construction appears to be the first H ( inc ) H(\operatorname {inc}) -conforming finite elements on tetrahedral meshes without further splitting. The key tools of the construction are the decomposition of polynomial tensor spaces and the characterization of the trace of the inc \operatorname {inc} operator. The polynomial elasticity complex and Koszul elasticity complex are created to derive the decomposition. The trace of the inc \operatorname {inc} operator is induced from a Green’s identity. Trace complexes and bubble complexes are also derived to facilitate the construction. Two-dimensional smooth finite element Hessian complex and div div \operatorname {div}\operatorname {div} complex are constructed.more » « less
-
Finite element spaces on a tetrahedron are constructed for div div -conforming symmetric tensors in three dimensions. The key tools of the con- struction are the decomposition of polynomial tensor spaces and the charac- terization of the trace operators. First, the div div Hilbert complex and its corresponding polynomial complexes are presented. Several decompositions of polynomial vector and tensor spaces are derived from the polynomial com- plexes. Second, traces for the divdiv operator are characterized through a Green’s identity. Besides the normal-normal component, another trace involving combination of first order derivatives of the tensor is continuous across the face. Due to the smoothness of polynomials, the symmetric tensor element is also continuous at vertices, and on the plane orthogonal to each edge. Besides, a finite element for sym curl-conforming trace-free tensors is constructed following the same approach. Putting all together, a finite element div div complex, as well as the bubble functions complex, in three dimensions is established.more » « less
-
Finite element de Rham complexes and finite element Stokes complexes with varying degrees of smoothness in three dimensions are systematically constructed in this paper. Smooth scalar finite elements in three dimensions are derived through a non-overlapping decomposition of the simplicial lattice. H(div)-conforming finite elements and H(curl)-conforming finite elements with varying degrees of smoothness are devised based on these smooth scalar finite elements. The finite element de Rham complexes with corresponding smoothness and commutative diagrams are induced by these elements. The div stability of the H(div)-conforming finite elements is established, and the exactness of these finite element complexes is proven.more » « less
-
We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0 for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings.more » « less