skip to main content


Title: Identification of Network Dynamics and Disturbance for a Multi-zone Building
We propose a method that simultaneously identifies a sparse transfer matrix and disturbance for a multi-zone building’s dynamics from input-output measurements. An l1 -regularized least-squares optimization problem is solved to obtain a sparse solution, so that only dominant interactions among zones are retained in the model. The disturbance is assumed to be piecewise-constant: the assumption aids identification and is motivated by the nature of occupancy that determines the disturbance. Application of our method on data from a simulation model shows promising results.  more » « less
Award ID(s):
1463316
NSF-PAR ID:
10076831
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2nd {IFAC} Conference on Cyber-Physical and Human Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a method that simultaneously identifies a dynamic model of a building’s temperature and a transformed version of the unmeasured disturbance affecting the building. Our method uses l1-regularization to encourage the identified disturbance to be approximately sparse, which is motivated by the piecewise-constant nature of occupancy that determines the disturbance. We test our method on both simulation data (both open-loop and closed-loop), and data from a real building. Results from simulation data show that the proposed method can accurately identify the transfer functions in open and closed-loop scenarios, even in the presence of large disturbances, and even when the disturbance does not satisfy the piecewise-constant property. Results from real building data show that algorithm produces sensible results. 
    more » « less
  2. We propose a method that simultaneously identifies a dynamic model of a building’s temperature in the presence of large, unmeasured disturbances, and a transformed version of the unmeasured disturbance. Our method uses l1-regularization to encourage the identified disturbance to be approximately sparse, which is motivated by the piecewise constant nature of occupancy that determines the disturbance. We test our method using both open-loop and closed-loop simulation data. Results show that the identified model can accurately identify the transfer functions in both scenarios, even in the presence of large disturbances, and even when the disturbance does not satisfy the piecewise-constant property. 
    more » « less
  3. The hemlock woolly adelgid (HWA; Adelges tsugae) is an invasive insect infestation that is spreading into the forests of the northeastern United States, driven by the warmer winter temperatures associated with climate change. The initial stages of this disturbance are difficult to detect with passive optical remote sensing, since the insect often causes its host species, eastern hemlock trees (Tsuga canadensis), to defoliate in the midstory and understory before showing impacts in the overstory. New active remote sensing technologies—such as the recently launched NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar—can address this limitation by penetrating canopy gaps and recording lower canopy structural changes. This study explores new opportunities for monitoring the HWA infestation with airborne lidar scanning (ALS) and GEDI spaceborne lidar data. GEDI waveforms were simulated using airborne lidar datasets from an HWA-infested forest plot at the Harvard Forest ForestGEO site in central Massachusetts. Two airborne lidar instruments, the NASA G-LiHT and the NEON AOP, overflew the site in 2012 and 2016. GEDI waveforms were simulated from each airborne lidar dataset, and the change in waveform metrics from 2012 to 2016 was compared to field-derived hemlock mortality at the ForestGEO site. Hemlock plots were shown to be undergoing dynamic changes as a result of the HWA infestation, losing substantial plant area in the middle canopy, while still growing in the upper canopy. Changes in midstory plant area (PAI 11–12 m above ground) and overall canopy permeability (indicated by RH10) accounted for 60% of the variation in hemlock mortality in a logistic regression model. The robustness of these structure-condition relationships held even when simulated waveforms were treated as real GEDI data with added noise and sparse spatial coverage. These results show promise for future disturbance monitoring studies with ALS and GEDI lidar data. 
    more » « less
  4. Abstract Motivation

    Rapid climate change is altering plant communities around the globe fundamentally. Despite progress in understanding how plants respond to these climate shifts, accumulating evidence suggests that disturbance could not only modify expected plant responses but, in some cases, have larger impacts on compositional shifts than climate change. Climate‐driven disturbances are becoming increasingly common in many biomes and are key drivers of vegetation dynamics at both species and community levels. Palaeoecological records provide valuable observational windows for elucidating the long‐term impacts of these disturbances on plant dynamics; however, sparse resolution and difficulty in disentangling drivers of change limit our ability to understand the impact of disturbance on plant communities. In this targeted review, we highlight emerging opportunities in palaeoecology to advance our understanding about how disturbance, especially fire, impacts the ecological and evolutionary dynamics of terrestrial plant communities.

    Location

    Global examples, with many from North America.

    Conclusions

    We propose a set of palaeoecological and integrative approaches that could greatly enhance our understanding of how disturbance regimes influence global plant dynamics. Specifically, we identify four future study areas: (1) focus on palaeoecological disturbance proxies beyond fire and leverage multi proxy research to examine the influence of interacting disturbances on plant community dynamics; (2) use advances in disturbance and vegetation reconstructions, including ancient sedimentary DNA, to provide the spatial, temporal and taxonomic resolution needed to resolve the relationship between changing disturbance regimes and corresponding shifts in plant community composition; (3) integrate palaeoecological, archaeological and Indigenous knowledge to disentangle the complex interplay between climate, human land use, fire and vegetation structure; and (4) apply “functional palaeoecology” and the synergy between palaeoecology and genetics to understand how fire disturbance has served as a long‐standing selective agent on plants. These frameworks could increase the resolution of disturbance‐driven plant dynamics, potentially providing valuable information for future management.

     
    more » « less
  5. To overcome the difficulties of time-varying disturbance, model mismatch, and frequent operation in the rudder/fin joint control system, an interference model predictive control (I-MPC) rudder/fin joint control system with sliding mode observer is proposed. Considering that the model mismatch problem occurs when the ship is sailing, the model mismatch and external disturbance are regarded as the total disturbance. A discrete 3-degree-of-freedom ship disturbance mathematical model is established. The rudder angle and fin angle are selected as the system inputs, then a sliding mode observer is designed to observe the time-varying disturbance and system output in real time. Different from traditional MPC and feedforward compensation, I-MPC will predict the output based on the disturbance observation value, and the control law is solved under rudder/fin angle and angular velocity constraints. Simulation results show that the proposed method improves the tracking performance and anti-disturbance performance of the rudder/fin system. The observer has high observation accuracy for constant, sinusoidal, and time-varying disturbances. Mechanism wear and energy loss caused by frequent operation are avoided.

     
    more » « less