skip to main content


Title: Piezotronics in Photo‐Electrochemistry
Abstract

Photo‐electrochemistry is the major trajectory for directly transforming solar energy into chemical compounds. The performance of a photo‐electrochemical (PEC) system is directly related to the interfacial electrical band energy landscape. Recently, piezotronics has stood out as a promising strategy for tuning interfacial energetics. It applies intrinsic or deformation‐induced ionic displacements (ferroelectric and piezoelectric polarizations) to engineer the interfacial charge distribution, and thereby the band structures of PEC electrodes. Here, contemporary research efforts of coupling piezotronics with photo‐electrochemisty are reviewed. Quantitative band diagrams of a polarization‐tuned semiconductor–electrolyte junction are first introduced, with an emphasis on the impact of interface chemistry. Experimental advances of employing piezoelectric and ferroelectric polarizations to enhance the charge separation and transportation, and surface kinetics of PEC water splitting are discussed. Finally, critical challenges of applying piezotronics in PEC systems and promising solutions are presented.

 
more » « less
Award ID(s):
1709025
NSF-PAR ID:
10077661
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
30
Issue:
43
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As a promising technology for sustainable hydrogen generation, photocatalytic (PC) and photoelectrochemical (PEC) water splitting have gathered immense attention over a half-century. While many review articles have covered extensive research achievements and technology innovations in water splitting, this article focuses on illustrating how the ferroelectric polarization influences charge separation and transportation in photocatalyst heterostructures during PC and PEC water splitting. This article first discusses the fundamentals of PC and PEC water splitting and how these electrochemical processes interact with the ferroelectric polarization-induced interfacial band bending, known as piezotronics. A few representative ferroelectric material-based heterogeneous photocatalyst systems are then discussed in detail to illustrate the effects of polarization, space charge region, and free charge concentration, which are critical factors determining the ferroelectric influences. Finally, a forward looking statement is provided to point out the research challenges and opportunities in this promising interdisciplinary research field between ferroelectrics and electrochemistry for clean energy applications. 
    more » « less
  2. High energy density, high temperature, and low loss polymer dielectrics are highly desirable for electric energy storage, e.g., film capacitors in the power electronics of electric vehicles and high-speed trains. Fundamentally, high polarization and low dielectric loss are two conflicting physical properties, because more polarization processes will involve more loss mechanisms. As such, we can only achieve a delicate balance between high dielectric constant and reasonably low loss. This review focuses on achieving low dielectric loss while trying to enhance dielectric constants for dielectric polymers, which can be divided into two categories: extrinsic and intrinsic. For extrinsic dielectric systems, the working mechanisms include dipolar (e.g., nanodielectrics) and space charge (e.g., ion gels) interfacial polarizations. These polarizations do not increase the intrinsic dielectric constants, but cause decreased breakdown strength and increased dielectric loss for polymers. For intrinsic dielectric polymers, the dielectric constant originates from electronic, atomic (or vibrational), and orientational polarizations, which are intrinsic to the polymers themselves. Because of the nature of molecular bonding for organic polymers, the dielectric constant from electronic and atomic polarizations is limited to 2-5 for hydrocarbon-based insulators (i.e., band gap > 4 eV). It is possible to use orientational polarization to enhance intrinsic dielectric constant while keeping reasonably low loss. However, nonlinear ferroelectric switching in ferroelectric polymers must be avoided. Meanwhile, paraelectric polymers often exhibit high electronic conduction due to large chain motion in the paraelectric phase. In this sense, dipolar glass polymers are more attractive for low loss dielectrics, because frozen chain dynamics enables deep traps to prevent electronic conduction. Both side-chain and main-chain dipolar glass polymers are promising candidates. Furthermore, it is possible to combine intrinsic and extrinsic dielectric properties synergistically in multilayer films to enhance breakdown strength and further reduce dielectric loss for high dielectric constant polar polymers. At last, future research directions are briefly discussed for the ultimate realization of next generation polymer film capacitors. 
    more » « less
  3. Electrochemical catalyst design and optimization primarily relies on understanding and facilitating interfacial charge transfer. Recently, piezotronics have emerged as a promising method for tuning the interfacial energetics. The unique band-engineering capability using piezoelectric or ferroelectric polarization could lead to performance gains for electrochemical catalysis beyond what can be achieved by chemical or structural optimization. This article addresses the fundamentals of surface polarization and corresponding band modulation at solid–liquid interfaces. The most recent advances in piezotronic modulations are discussed from multiple perspectives of catalysis, including photocatalytic, photoelectrochemical, and electrochemical processes, particularly for energy-related applications. The concept of piezocatalysis, a direct conversion of mechanical energy to chemical energy, is introduced with an example of mechanically driven water splitting. While still in the early stages, piezotronics is envisioned to become a powerful tool for revolutionizing electrochemical catalysis. 
    more » « less
  4. Efficient charge separation and transportation are key factors that determine the photoelectrochemical (PEC) water‐splitting efficiency. Here, a simultaneous enhancement of charge separation and hole transportation on the basis of ferroelectric polarization in TiO2–SrTiO3core–shell nanowires (NWs) is reported. The SrTiO3shell with controllable thicknesses generates a considerable spontaneous polarization, which effectively tunes the electrical band bending of TiO2. Combined with its intrinsically high charge mobility, the ferroelectric SrTiO3thin shell significantly improves the charge‐separation efficiency (ηseparation) with minimized influence on the hole‐migration property of TiO2photoelectrodes, leading to a drastically increased photocurrent density (Jph). Specifically, the 10 nm‐thick SrTiO3shell yields the highestJphand ηseparationof 1.43 mA cm−2and 87.7% at 1.23 V versus reversible hydrogen electrode, respectively, corresponding to 83% and 79% improvements compared with those of pristine TiO2NWs. The PEC performance can be further manipulated by thermal treatment, and the control of SrTiO3film thicknesses and electric poling directions. This work suggests a material with combined ferroelectric and semiconducting features could be a promising solution for advancing PEC systems by concurrently promoting the charge‐separation and hole‐transportation properties.

     
    more » « less
  5. Abstract

    Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.

     
    more » « less