skip to main content


Title: Cis / Cis -2,5-dipropenylthiophene monomers for high-molecular-weight poly(2,5-thienylene vinylene)s through acyclic diene metathesis polymerization
Award ID(s):
1301346
NSF-PAR ID:
10077961
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Polymer Science Part A: Polymer Chemistry
Volume:
52
Issue:
5
ISSN:
0887-624X
Page Range / eLocation ID:
591 to 595
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We report improved synthetic routes to the isomericisoprene-derived β-epoxydiols (β-IEPOX) in high yield(57 %–69 %) from inexpensive, readily available starting compounds. Thesyntheses do not require the protection/deprotection steps or time-consumingpurification of intermediates and can readily be scaled up to yield thetarget IEPOX isomers in gram quantities. Emissions of isoprene(2-methyl-1,3-butadiene, C5H8), primarily from deciduousvegetation, constitute the largest source of nonmethane atmospherichydrocarbons. In the gas phase under low-nitric-oxide (NO) conditions,addition of the atmospheric hydroxyl radical (OH) followed by rapid addition ofO2 yields isoprene-derived hydroxyperoxyl radicals. The major sink(>90 %) for the peroxyl radicals is a sequential reaction withthe hydroperoxyl radical (HO2), OH, and O2, which is then followed bythe elimination of OH to yield a ∼2:1 mixture ofcis- and trans-(2-methyloxirane-2,3-diyl)dimethanol (cis- and trans-β-IEPOX). The IEPOXisomers account for about 80 % of closed-shell hydroxyperoxylproducts and are rapidly taken up into acidic aerosols to form secondaryorganic aerosol (SOA). IEPOX-derived SOA makes a significant masscontribution to fine particulate matter (PM2.5), which is known to be amajor factor in climate forcing as well as adversely affecting respiratory andcardiovascular systems of exposed populations. Prediction of ambientPM2.5 composition and distribution, both in regional- and global-scaleatmospheric chemistry models, crucially depends on the accuracy ofidentification and quantitation of uptake product formation. Accessibilityof authentic cis- and trans-β-IEPOX in high purity and in large quantity forlaboratory studies underpins progress in developing models as well asidentification and quantitation of PM2.5 components.

     
    more » « less