The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.
- Award ID(s):
- 1825250
- NSF-PAR ID:
- 10078108
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Polymer Science Part B: Polymer Physics
- Volume:
- 57
- Issue:
- 1
- ISSN:
- 0887-6266
- Format(s):
- Medium: X Size: p. 9-14
- Size(s):
- p. 9-14
- Sponsoring Org:
- National Science Foundation
More Like this
-
It is well-known that particle–polymer interactions strongly control the adsorption and conformations of adsorbed chains. Interfacial layers around nanoparticles consisting of adsorbed and free matrix chains have been extensively studied to reveal their rheological contribution to the behavior of nanocomposites. This work focuses on how chemical heterogeneity of the interfacial layers around the particles governs the microscopic mechanical properties of polymer nanocomposites. Low glass-transition temperature composites consisting of poly(vinyl acetate) coated silica nanoparticles in poly(ethylene oxide) and poly(methyl acrylate) matrices, and of poly(methyl methacrylate) silica nanoparticles in a poly(methyl acrylate) matrix are examined using rheology and X-ray photon correlation spectroscopy. We demonstrate that miscibility between the adsorbed and matrix chains in the interfacial layers led to the observed unusual reinforcement. We suggest that packing of chains in the interfacial regions may also contribute to the reinforcement in the polymer nanocomposites. These features may be used in designing mechanically adaptive composites operating at varying temperature.more » « less
-
Abstract This study investigates the effect of adding oligomers on the rheological properties of polymer nanocomposite melts with the goal of enhancing the processability of nanocomposites. The scaling analysis of plateau modulus (
GN ) is used in understanding the complex mechanical behavior of entangled poly(methyl acrylate) (PMA) melts upon oligomer addition. Increasing the oligomer amount led to a decrease inGN and an apparent degree of entanglement (Z ) in the neat polymer melt. The particle dispersion states at two particle loadings with oligomer addition are examined in transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). The dilution exponent is found unchanged at 7 and 17 vol% particle loadings for the well‐dispersed PMA‐SiO2nanocomposites compared to the neat PMA solution. These findings suggest that attractive particles with strong interfacial layers do not influence the tube dilution scaling of the polymer with the oligomer. To the contrary, composites with weak polymer‐particle interfaces demonstrate phase separation of particles when oligomers are introduced and its exponent for tube dilution scaling reaches 4 at a particle loading of 17 vol%, potentially indicating that network‐forming clusters influence chain entanglements in this scenario. -
Solid polymer and perovskite-type ceramic electrolytes have both shown promise in advancing solid-state lithium metal batteries. Despite their favorable interfacial stability against lithium metal, polymer electrolytes face issues due to their low ionic conductivity and poor mechanical strength. Highly conductive and mechanically robust ceramics, on the other hand, cannot physically remain in contact with redox-active particles that expand and contract during charge-discharge cycles unless excessive pressures are used. To overcome the disadvantages of each material, polymer-ceramic composites can be formed; however, depletion interactions will always lead to aggregation of the ceramic particles if a homopolymer above its melting temperature is used. In this study, we incorporate Li 0.33 La 0.56 TiO 3 (LLTO) nanoparticles into a block copolymer, polystyrene- b -poly (ethylene oxide) (SEO), to develop a polymer-composite electrolyte (SEO-LLTO). TEMs of the same nanoparticles in polyethylene oxide (PEO) show highly aggregated particles whereas a significant fraction of the nanoparticles are dispersed within the PEO-rich lamellae of the SEO-LLTO electrolyte. We use synchrotron hard x-ray microtomography to study the cell failure and interfacial stability of SEO-LLTO in cycled lithium-lithium symmetric cells. Three-dimensional tomograms reveal the formation of large globular lithium structures in the vicinity of the LLTO aggregates. Encasing the SEO-LLTO between layers of SEO to form a “sandwich” electrolyte, we prevent direct contact of LLTO with lithium metal, which allows for the passage of seven-fold higher current densities without signatures of lithium deposition around LLTO. We posit that eliminating particle clustering and direct contact of LLTO and lithium metal through dry processing techniques is crucial to enabling composite electrolytes.more » « less
-
ABSTRACT Hydrophobic mica particles were prepared by piranha solution activation, silanization, and copolymerization with acrylate monomers. Its surface morphology, hydrophilic properties, and thermogravimetric analysis changed differently in comparison with those of pristine mica. Scanning electron microscopy (SEM) showed that the modified (001) mica surface changed from flat to coarse. Thermogravimetric curves demonstrated that silane coupling agents and the grafted polymer were anchored on the modified‐mica surface. The alternating surface polarity state was verified by different dispersion performances in the solvents. SEM images showed that the polypropylene (PP)/modified‐mica composites had a better quality compatibility than the PP/untreated‐mica composites. The PP/polymer‐grafted‐mica composites had improved mechanical properties, including stretching, tension, and impact properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci.
2017 ,134 , 44985. -
ABSTRACT Amphiphilic self‐folding random copolymers exhibit different solution behaviors depending on the identity of the hydrophobic/hydrophilic units. Herein, it is demonstrated that changing the hydrophilic unit from poly(ethylene glycol) to the sugar trehalose causes increased discrepancy in the polarity difference with a fluorinated hydrophobic segment and changes the aggregation state of the polymer in water. The PEG‐fluorinated and trehalose/PEG‐fluorinated amphiphilic random copolymers were the most efficient at encapsulating a fluorinated agrochemical. The small‐molecule agrochemical exerts a strong influence on the self‐assembly of the polymers, demonstrating that fluorous interactions result in not only intramolecular self‐folding behavior but also intermolecular polymer association to form well‐defined nanoparticles. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.
2019 ,57 , 352–359