skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Directional Self‐Assembly of Fluorinated Star Block Polymer Thin Films Using Mixed Solvent Vapor Annealing
ABSTRACT

We demonstrate the directional alignment of perpendicular‐lamellae domains in fluorinated three‐armed star block polymer (BP) thin films using solvent vapor annealing with shear stress. The control of orientation and alignment was accomplished without any substrate surface modification. Additionally, three‐armed star poly(methyl methacrylate‐block‐styrene) [PMMA‐PS] and poly(octafluoropentyl methacrylate‐block‐styrene) were compared to their linear analogues to examine the impact of fluorine content and star architecture on self‐assembled BP feature sizes and interdomain density profiles. X‐ray reflectometry results indicated that the star BP molecular architecture increased the effective polymer segregation strength and could possibly facilitate reduced polymer domain spacings, which are useful in next‐generation nanolithographic applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019, 57, 1663–1672

 
more » « less
Award ID(s):
1610134
PAR ID:
10457035
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science Part B: Polymer Physics
Volume:
57
Issue:
24
ISSN:
0887-6266
Page Range / eLocation ID:
p. 1663-1672
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) withn‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 376–381

     
    more » « less
  2. ABSTRACT

    Cobaltocenium‐containing polyelectrolyte block copolymer nanoparticles were prepared via polymerization‐induced self‐assembly (PISA) using aqueous dispersion RAFT polymerization. The cationic steric stabilizer was a macromolecular chain‐transfer agent (macro‐CTA) based on poly(2‐cobaltocenium amidoethyl methacrylate chloride) (PCoAEMACl), and the core‐forming block was poly(2‐hydroxypropyl methacrylate) (PHPMA). Stable cationic spherical nanoparticles were formed in aqueous solution with low dispersity without adding any salts. The chain extension of macro‐CTA with HPMA was efficient and fast. The effects of block copolymer compositions, solid content, charge density, and addition of salts were studied. It was found that the degree of polymerization of both the stabilizer PCoAEMACl and the core‐forming PHPMA had a strong influence on the size of nanoparticles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci.2020,58, 77–83

     
    more » « less
  3. ABSTRACT

    The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 9–14

     
    more » « less
  4. ABSTRACT

    New methacrylate monomers with carbazole moieties as pendant groups were synthesized by multistep syntheses starting from carbazoles with biphenyl substituents in the aromatic ring. The corresponding polymers were prepared using a free‐radical polymerization. The novel polymers containN‐alkylated carbazoles mono‐ or bi‐substituted with biphenyl groups in the aromatic ring.N‐alkyl chains in polymers vary by length and structure. All new polymers were synthesized to evaluate the structural changes in terms of their effect on the energy profile, thermal, dielectric, and photophysical properties when compared to the parent polymer poly(2‐(9H‐carbazol‐9‐yl)ethyl methacrylate). According to the obtained results, these compounds may be well suited for memory resistor devices. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019, 57, 70–76

     
    more » « less
  5. ABSTRACT

    The use of ionic liquids (ILs) as media in radical polymerizations has demonstrated the ability of these unique solvents to improve both reaction kinetics and polymer product properties. However, the bulk of these studies have examined the polymerization behavior of common organic monomers (e.g., methyl methacrylate, styrene) dissolved in conventional ILs. There is increasing interest in polymerized ILs (poly(ILs)), which are ionomers produced from the direct polymerization of styrene‐, vinyl‐, and acrylate‐functionalized ILs. Here, the photopolymerization kinetics of IL monomers are investigated for systems in which styrene or vinyl functionalities are pendant from the imidazolium cation. Styrene‐functionalized IL monomers typically polymerized rapidly (full conversion ≤1 min) in both neat compositions or when diluted with a nonpolymerizable IL, [C2mim][Tf2N]. However, monomer conversion in vinyl‐functionalized IL monomers is much more dependent on the nature of the nonpolymerizable group. ATR‐FTIR analysis and molecular simulations of these monomers and monomer mixtures identified the presence of multiple intermolecular interactions (e.g., π–π stacking, IL aggregation) that contribute to the polymerization behaviors of these systems. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2364–2375

     
    more » « less