skip to main content

Title: Exploiting arene-perfluoroarene interactions for dispersion of carbon black in rubber compounds
Coupling agents are intended to promote filler dispersion by providing a bridge between the filler and the rubber phase. This study investigated the ability of a novel physical coupling agent, poly(butadienegraft-pentafluorostyrene) in a mixture with polypentafluorostyrene, to improve rubber-filler interactions and suppress filler-filler networking in carbon-black-reinforced styrene-butadiene rubber (SBR), and thereby decrease hysteresis. The electron-rich aromatic rings of carbon black are involved in areneperfluoroarene interactions with the electron-poor pentafluorostyrene aromatic rings of the coupling agent. The SBR chains in the rubber compound have an affinity for the polybutadiene backbone of the coupling agent. The interactions between carbon black and the coupling agent were analyzed using Raman spectroscopy, transmission electron microscopy, zeta potential measurements, surface area measurements, and scanning electron microscopy. Filler flocculation analysis showed that the coupling agent improves the dispersion and lowers the energy of dissipation. The hysteresis loss, quantified in terms of loss tangent values at 60 C, was reduced by up to 12% due to the coupling agent's promotion of better filler-rubber interactions. The influence of the PPFS graft length was also studied.
Award ID(s):
Publication Date:
Journal Name:
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Reinforcing fillers are necessary in rubber compounding to aid in enhancing the mechanical properties of the compound for various applications. Carbon black (CB) is currently the most common reinforcing filler used in tire compounding. Lignin, an amorphous polyphenolic material derived from plants and a by-product of the pulp and paper industry, is also an attractive material that can serve as a dispersant and as a reinforcing filler. This paper evaluates the interactions between styrene-butadiene rubber and reinforcing fillers with an electron-rich π- system, such as lignin and CB, in the presence of a graft copolymer (PB-g-PPFS) of PB and electron-deficient 2,3,4,5,6-pentafluorostyrene (PFS). The interactions are attributed to areneperfluoroarene interactions between the electron-deficient π-system of the polyperfluoroarene grafts and the electron-rich π-system of lignin and/or CB particles. The effects of improved fillerrubber interactions on mechanical properties and dynamic mechanical properties are analyzed. This paper will demonstrate the use of PB-g-PPFS as a coupling agent in rubber compounds to enhance the interaction between the filler, lignin and lignin-carbon black hybrid filler, and the rubber matrix to achieve a reduction in the hysteresis loss and enhanced filler dispersion.
  2. A byproduct of the power generation industries, fly ash can be used as a potential filler in many commercial products including rubber-based products. Reusing the fly ash in this manner is an efficient way to help prevent air pollution which occurs if such particles are released freely to the atmosphere. The reinforcement efficiency of fly ash for partial replacement of carbon black and silica fillers in styrenebutadiene rubber compounds was investigated in this work. The total content of fillers was held constant at 50 phr (weight ratio of filler to rubber was 0.5) when not using silica fillers at all, and 54 phr when using 4 phr carbon black only with silica fillers, while the content of fly ash increased from 0 to 10 phr. In the evaluation of the rubber compounds, the focus was the mechanical properties and adhesion of steel reinforcement cords to the styrene-butadiene rubber compounds. Adhesion between the compounds and steel wire reinforcement was measured for assessing efficacy of adding fly ash to the rubber compounds in tire applications. Ball mill treatment was used to reduce the size of the fly ash particles while also modifying their surface topography. The comparisons of untreated and ball millmore »treated fly ash filled rubber compounds and rubber compounds containing different fillers were accomplished subsequently. The results revealed that the partial addition of up to 10 phr fly ash to rubber compounds resulted in increases in elongation at break, adhesion to reinforcement steel cord, wet-grip, as well as lower rolling resistance« less
  3. A coarse-grained model has been built to study the effect of the interfacial interaction between spherical filler particles and polymer on the mechanical properties of polymer nanocomposites. The polymer is modeled as bead-spring chains, and nano-fillers grafted with coupling agent are embedded into the polymer matrix. The potential parameters for polymer and filler are optimized to maximally match styrene-butadiene rubber reinforced with silica particles. The results indicated that, to play a noticeable role in mechanical reinforcement, a critical value exists for the grafting density of the filler–polymer coupling agent. After reaching the critical value, the increase of grafting density can substantially enhance mechanical properties. It is also observed that the increase of grafting density does not necessarily increase the amount of independent polymer chains connected to fillers. Instead, a significant amount of increased grafting sites serve to further strengthen already connected polymer and filler, indicating that mechanical reinforcement can occur through the locally strengthened confinement at the filler–polymer interface. These understandings based on microstructure visualization shed light on the development of new filler polymer interfaces with better mechanical properties.
  4. Abstract Polycyclic aromatic hydrocarbons (PAHs) play an important role in interstellar chemistry and are subject to high energy photons that can induce excitation, ionization, and fragmentation. Previous studies have demonstrated electronic relaxation of parent PAH monocations over 10–100 femtoseconds as a result of beyond-Born-Oppenheimer coupling between the electronic and nuclear dynamics. Here, we investigate three PAH molecules: fluorene, phenanthrene, and pyrene, using ultrafast XUV and IR laser pulses. Simultaneous measurements of the ion yields, ion momenta, and electron momenta as a function of laser pulse delay allow a detailed insight into the various molecular processes. We report relaxation times for the electronically excited PAH * , PAH +* and PAH 2+* states, and show the time-dependent conversion between fragmentation pathways. Additionally, using recoil-frame covariance analysis between ion images, we demonstrate that the dissociation of the PAH 2+ ions favors reaction pathways involving two-body breakup and/or loss of neutral fragments totaling an even number of carbon atoms.
  5. Nickel-Fe3O4 nanoparticles supported on multi-walled carbon nanotubes (Ni-Fe3O4/MWCNTs) were synthesized by mechanical grinding of a sample of nickel salt, Fe3O4 and MWCNTs using a ball-mill mixer. The preparation method allows for bulk production of Ni-Fe3O4 nanoparticles at room temperature without the necessity of any solvent or chemical reagent. The nanoparticles prepared by this method exhibit small particles size of 5–8 nm with uniform dispersion of nickel nanoparticles on the surface of multi-walled carbon nanotubes. The Ni-Fe3O4/MWCNTs demonstrated remarkable catalytic activity for Suzuki cross coupling reactions of functionalized aryl halides and phenylboronic acids with excellent turnover number and turnover frequency (e.g., 76,000 h−1) using Monowave 50 conventional heating reactor at 120 °C within a very short reaction time of 15 min. The catalyst is air-stable and exhibits easy removal from the reaction mixture due to its magnetic properties, recyclability with no loss of activity, and significantly better performance than the other well-known commercial nickel catalyst. The Ni-Fe3O4/MWCNTs nanoparticles were fully characterized by a variety of spectroscopic techniques including X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). Since nickel offers similar properties to other more expensive transition metals including the most widely used palladium counterpart in cross couplingmore »catalysis, this work demonstrates a promising lower-cost, air-moisture stable and efficient alternative catalyst based on nickel nanoparticles for cross coupling reactions.« less