skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Explicit Hermite-Taylor Method for the Schrödinger Equation
Abstract An explicit spectrally accurate order-adaptive Hermite-Taylor method for the Schrödinger equation is developed. Numerical experiments illustrating the properties of the method are presented. The method, which is able to use very coarse grids while still retaining high accuracy, compares favorably to an existing exponential integrator – high order summation-by-parts finite difference method.  more » « less
Award ID(s):
1319054
PAR ID:
10079323
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications in Computational Physics
Volume:
21
Issue:
05
ISSN:
1815-2406
Page Range / eLocation ID:
1207 to 1230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor stencil. The construction of the flux of the low-order method is based on an idea from Abgrall et al. (2017). The mass flux of the low-order and the high-order methods are identical on each finite element cell. This allows for mass preserving and invariant-domain preserving limiting. 
    more » « less
  2. Abstract This paper reports a recent development of the high-order spectral difference method with divergence cleaning (SDDC) for accurate simulations of both ideal and resistive magnetohydrodynamics (MHD) on curved unstructured grids consisting of high-order isoparametric quadrilateral elements. The divergence cleaning approach is based on the improved generalized Lagrange multiplier, which is thermodynamically consistent. The SDDC method can achieve an arbitrarily high order of accuracy in spatial discretization, as demonstrated in the test problems with smooth solutions. The high-order SDDC method combined with the artificial dissipation method can sharply capture shock interfaces with the oscillation-free property and resolve small-scale vortex structures and density fluctuations on relatively sparse grids. The robustness of the codes is demonstrated through long time simulations of ideal MHD problems with progressively interacting shock structures, resistive MHD problems with high Lundquist numbers, and viscous resistive MHD problems on complex curved domains. 
    more » « less
  3. To achieve the full potential of high-order numerical methods for solving partial differential equations, the generation of a high-order mesh is required. One particular challenge in the generation of high-order meshes is avoiding invalid (tangled) elements that can occur as a result of moving the nodes from the low-order mesh that lie along the boundary to conform to the true curved boundary. In this paper, we propose a heuristic for correcting tangled second- and third-order meshes. For each interior edge, our method minimizes an objective function based on the unsigned angles of the pair of triangles that share the edge. We present several numerical examples in two dimensions with second- and third-order elements that demonstrate the capabilities of our method for untangling invalid meshes. 
    more » « less
  4. One challenge in the generation of high-order meshes is that mesh tangling can occur as a consequence of moving the new boundary nodes to the true curved boundary. In this paper, we propose a new optimization-based method that uses signed angles to untangle invalid second- and third-order triangular meshes. Our proposed method consists of two passes. In the first pass, we loop over each high-order interior edge node and minimize an objective function based on the signed angles of the pair of triangles that share the node. In the second pass, we loop over face nodes and move them to the mean of the high-order nodes of the triangle to which the face node belongs. We present several numerical examples in two dimensions with second- and third-order elements that demonstrate the capabilities of our method for untangling invalid meshes. 
    more » « less
  5. The second order saddlepoint approximation (SPA) has been used for component reliability analysis for higher accuracy than the traditional second order reliability method. This work extends the second order SPA to system reliability analysis. The joint distribution of all the component responses is approximated by a multivariate normal distribution. To maintain high accuracy of the approximation, the proposed method employs the second order SPA to accurately generate the marginal distributions of component responses; to simplify computations and achieve high efficiency, the proposed method estimates the covariance matrix of the multivariate normal distribution with the first order approximation to component responses. Examples demonstrate the high effectiveness of the second order SPA method for system reliability analysis. 
    more » « less