This paper describes the first implementation of an array of two-dimensional (2D) layered conductive metal–organic frameworks (MOFs) as drop-casted film electrodes that facilitate voltammetric detection of redox active neurochemicals in a multi-analyte solution. The device configuration comprises a glassy carbon electrode modified with a film of conductive MOF (M3HXTP2; M = Ni, Cu; and X = NH, 2,3,6,7,10,11-hexaiminotriphenylene (HITP) or O, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)). The utility of 2D MOFs in voltammetric sensing is measured by the detection of ascorbic acid (AA), dopamine (DA), uric acid (UA), and serotonin (5-HT) in 0.1 M PBS (pH=7.4). In particular, Ni3HHTP2 MOF demonstrated nanomolar detection limits of 63 ± 11 nM for DA and 40 ± 17 nM for 5-HT through a wide concentration range (40 nM – 200 µM). The applicability in biologically-relevant detection was further demonstrated in simulated urine using Ni3HHTP2 MOFs for the detection of 5-HT with nanomolar detection limit of 63 ± 11 nM for 5-HT through a wide concentration range (63 nM – 200 µM) in the presence of constant background of DA. The implementation of conductive MOFs in voltammetric detection holds promise for further development of highly modular, sensitive, selective, and stable electroanalytical devices.
more »
« less
Detection of Acetone on Human Breath Using Cyclic Voltammetry
A cyclic voltammetric measurement protocol for acetone concentration collected in the vapor phase and measured in solution is demonstrated for acetone concentrations across the human physiological range, 1 μM to 10 mM at platinum electrodes in 0.5M H2SO4. Effects arise through adsorption of acetone from the gas phase onto a platinum surface and hydrogen in acidic solution within the voltammetric butterfly region. The protocol is demonstrated to yield breath acetone concentration on a human subject within the physiological range and consistent with ketone urine test strip.
more »
« less
- Award ID(s):
- 0809745
- PAR ID:
- 10079469
- Date Published:
- Journal Name:
- ECS transactions
- Volume:
- 41
- Issue:
- 18
- ISSN:
- 1938-5862
- Page Range / eLocation ID:
- 1-7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Alkali ion intercalation is fundamental to battery technologies for a wide spectrum of potential applications that permeate our modern lifestyle, including portable electronics, electric vehicles, and the electric grid. In spite of its importance, the Nernstian nature of the charge transfer process describing lithiation of carbon has not been described previously. Here we use the ultrathin few-layer graphene (FLG) with micron-sized grains as a powerful platform for exploring intercalation and co-intercalation mechanisms of alkali ions with high versatility. Using voltammetric and chronoamperometric methods and bolstered by density functional theory (DFT) calculations, we show the kinetically facile co-intercalation of Li + and K + within an ultrathin FLG electrode. While changes in the solution concentration of Li + lead to a displacement of the staging voltammetric signature with characteristic slopes ca. 54–58 mV per decade, modification of the K + /Li + ratio in the electrolyte leads to distinct shifts in the voltammetric peaks for (de)intercalation, with a changing slope as low as ca. 30 mV per decade. Bulk ion diffusion coefficients in the carbon host, as measured using the potentiometric intermittent titration technique (PITT) were similarly sensitive to solution composition. DFT results showed that co-intercalation of Li + and K + within the same layer in FLG can form thermodynamically favorable systems. Calculated binding energies for co-intercalation systems increased with respect to the area of Li + -only domains and decreased with respect to the concentration of –K–Li– phases. While previous studies of co-intercalation on a graphitic anode typically focus on co-intercalation of solvents and one particular alkali ion, this is to the best of our knowledge the first study elucidating the intercalation behavior of two monovalent alkali ions. This study establishes ultrathin graphitic electrodes as an enabling electroanalytical platform to uncover thermodynamic and kinetic processes of ion intercalation with high versatility.more » « less
-
Hillmyer, Marc A (Ed.)A high-salt phase-separation re-entry is observed in mixtures of poly (diallyldimethyl ammonium chloride) (PDADMAC), a strong polycation, and poly (acrylic acid) (PAA), a partially charged polyanion, within the pH range 4.7 to 5.3. This intriguing phenomenon exclusively occurs at salt concentrations exceeding the critical salt concentration required for dissolving the coacervate formed at low salt concentrations, here named the “Upper Critical Salt Concentration” (UCSaC), and at monomer concentrations exceeding 0.1M for each polymer. The transition from associative phase separation at low salt concentration, to a single solution, and ultimately to segregative separation at high salt concentration called the Lower Critical Salt Concentration (LCSaC), arises from the interplay between electrostatic interactions and the hydrophobicity of neutral PAA monomers in a high-salt solvent. To explain this transition, we use a theory combining short-range ion pairing and counterion condensation with long-range electrostatics using the random phase approximation (RPA), and with hydrophobic interactions between PAA neutral monomers and water. The latter is modeled through a Flory-Huggins χ parameter of around 0.6. Literature observations of a continuous transition from associative to segregative phase transition with increasing salt concentration, without a homogeneous single-phase solution at intermediate salt concentration, are also predicted and discussed.more » « less
-
Continuous-wave Doppler radar (CWDR) can be used to remotely detect physiological parameters, such as respiration and heart signals. However, detecting and separating multiple targets remains a challenging task for CWDR. While complex transceiver architectures and advanced signal processing algorithms have been demonstrated as effective for multiple target separations in some scenarios, the separation of equidistant sources within a single antenna beam remains a challenge. This paper presents an alternative phase tuning approach that exploits the diversity among target distances and physiological parameters for multi-target detection. The design utilizes a voltage-controlled analog phase shifter to manipulate the phase correlation of the CWDR and thus create different signal mixtures from the multiple targets, then separates them in the frequency domain by suppressing individual signals sequentially. We implemented the phase correlation system based on a 2.4 GHz single-channel CWDR and evaluated it against multiple mechanical and human targets. The experimental results demonstrated successful separation of nearly equidistant targets within an antenna beam, equivalent to separating physiological signals of two people seated shoulder to shoulder.more » « less
-
RationaleThe molecular environment is known to impact the secondary and tertiary structures of biomolecules both in solution and in the gas phase, shifting the equilibrium between different conformational and oligomerization states. However, there is a lack of studies monitoring the impacts of solution additives and gas‐phase modifiers on biomolecules characterized using ion mobility techniques. MethodsThe effect of solution additives and gas‐phase modifiers on the molecular environment of two common heme proteins, bovine cytochrome c and equine myoglobin, is investigated as a function of the time after desolvation (e.g., 100–500 ms) using nanoelectrospray ionization coupled to trapped ion mobility spectrometry with detection by time‐of‐flight mass spectrometry. Organic compounds used as additives/modifiers (methanol, acetonitrile, acetone) were either added to the aqueous protein solution before ionization or added to the ion mobility bath gas by nebulization. ResultsChanges in the mobility profiles are observed depending on the starting solution composition (i.e., in aqueous solution at neutral pH or in the presence of organic content: methanol, acetone, or acetonitrile) and the protein. In the presence of gas‐phase modifiers (i.e., N2doped with methanol, acetone, or acetonitrile), a shift in the mobility profiles driven by the gas‐modifier mass and size and changes in the relative abundances and number of IMS bands are observed. ConclusionsWe attribute the observed changes in the mobility profiles in the presence of gas‐phase modifiers to a clustering/declustering mechanism by which organic molecules adsorb to the protein ion surface and lower energetic barriers for interconversion between conformational states, thus redefining the free energy landscape and equilibria between conformers. These structural biology experiments open new avenues for manipulation and interrogation of biomolecules in the gas phase with the potential to emulate a large suite of solution conditions, ultimately including conditions that more accurately reflect a variety of intracellular environments.more » « less
An official website of the United States government

