skip to main content

Title: An Evaluation of Asynchronous Software Events on Modern Hardware
Runtimes and applications that rely heavily on asynchronous event notifications suffer when such notifications must traverse several layers of processing in software. Many of these layers necessarily exist in order to support a general-purpose, portable kernel architecture, but they introduce considerable overheads for demanding, high-performance parallel runtimes and applications. Other overheads can arise from a mismatched event programming or system call interface. Whatever the case, the average latency and variance in latency of commonly used software mechanisms for event notifications is abysmal compared to the capabilities of the hardware, which can exhibit orders of magnitude lower latency. We leverage the flexibility and freedom of the previously proposed Hybrid Runtime (HRT) model to explore the construction of low-latency, asynchronous software events uninhibited by interfaces and execution models commonly imposed by general-purpose OSes. We propose several mechanisms in a system we call Nemo which employs kernel mode-only features to accelerate event notifications by up to 4,000 times and we provide a detailed evaluation of our implementation using extensive microbenchmarks. We carry out our evaluation both on a modern x64 server and the Intel Xeon Phi. Finally, we propose a small addition to existing interrupt controllers (APICs) that could push the limit of more » asynchronous events closer to the latency of the hardware cache coherence network. « less
Authors:
;
Award ID(s):
1718252 1763743
Publication Date:
NSF-PAR ID:
10079614
Journal Name:
2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)
Page Range or eLocation-ID:
355 to 368
Sponsoring Org:
National Science Foundation
More Like this
  1. Graphics Processing Units (GPUs) exploit large amounts of thread-level parallelism to provide high instruction throughput and to efficiently hide long-latency stalls. The resulting high throughput, along with continued programmability improvements, have made GPUs an essential computational resource in many domains. Applications from different domains can have vastly different compute and memory demands on the GPU. In a large-scale computing environment, to efficiently accommodate such wide-ranging demands without leaving GPU resources underutilized, multiple applications can share a single GPU, akin to how multiple applications execute concurrently on a CPU. Multi-application concurrency requires several support mechanisms in both hardware and software. Onemore »such key mechanism is virtual memory, which manages and protects the address space of each application. However, modern GPUs lack the extensive support for multi-application concurrency available in CPUs, and as a result suffer from high performance overheads when shared by multiple applications, as we demonstrate. We perform a detailed analysis of which multi-application concurrency support limitations hurt GPU performance the most. We find that the poor performance is largely a result of the virtual memory mechanisms employed in modern GPUs. In particular, poor address translation performance is a key obstacle to efficient GPU sharing. State-of-the-art address translation mechanisms, which were designed for single-application execution, experience significant inter-application interference when multiple applications spatially share the GPU. This contention leads to frequent misses in the shared translation lookaside buffer (TLB), where a single miss can induce long-latency stalls for hundreds of threads. As a result, the GPU often cannot schedule enough threads to successfully hide the stalls, which diminishes system throughput and becomes a first-order performance concern. Based on our analysis, we propose MASK, a new GPU framework that provides low-overhead virtual memory support for the concurrent execution of multiple applications. MASK consists of three novel address-translation-aware cache and memory management mechanisms that work together to largely reduce the overhead of address translation: (1) a token-based technique to reduce TLB contention, (2) a bypassing mechanism to improve the effectiveness of cached address translations, and (3) an application-aware memory scheduling scheme to reduce the interference between address translation and data requests. Our evaluations show that MASK restores much of the throughput lost to TLB contention. Relative to a state-of-the-art GPU TLB, MASK improves system throughput by 57.8%, improves IPC throughput by 43.4%, and reduces application-level unfairness by 22.4%. MASK's system throughput is within 23.2% of an ideal GPU system with no address translation overhead.« less
  2. Deep neural networks (DNNs) are increasingly used for real-time inference, requiring low latency, but require significant computational power as they continue to increase in complexity. Edge clouds promise to offer lower latency due to their proximity to end-users and having powerful accelerators like GPUs to provide the computation power needed for DNNs. But it is also important to ensure that the edge-cloud resources are utilized well. For this, multiplexing several DNN models through spatial sharing of the GPU can substantially improve edge-cloud resource usage. Typical GPU runtime environments have significant interactions with the CPU, to transfer data to the GPU,more »for CPU-GPU synchronization on inference task completions, etc. These result in overheads. We present a DNN inference framework with a set of software primitives that reduce the overhead for DNN inference, increase GPU utilization and improve performance, with lower latency and higher throughput. Our first primitive uses the GPU DMA effectively, reducing the CPU cycles spent to transfer the data to the GPU. A second primitive uses asynchronous ‘events’ for faster task completion notification. GPU runtimes typically preclude fine-grained user control on GPU resources, causing long GPU downtimes when adjusting resources. Our third primitive supports overlapping of model-loading and execution, thus allowing GPU resource re-allocation with very little GPU idle time. Our other primitives increase inference throughput by improving scheduling and processing more requests. Overall, our primitives decrease inference latency by more than 35% and increase DNN throughput by 2-3×.« less
  3. As network, I/O, accelerator, and NVM devices capable of a million operations per second make their way into data centers, the software stack managing such devices has been shifting from implementations within the operating system kernel to more specialized kernel-bypass approaches. While the in-kernel approach guarantees safety and provides resource multiplexing, it imposes too much overhead on microsecond-scale tasks. Kernel-bypass approaches improve throughput substantially but sacrifice safety and complicate resource management: if applications are mutually distrusting, then either each application must have exclusive access to its own device or else the device itself must implement resource management. This paper showsmore »how to attain both safety and performance via intra-process isolation for data plane libraries. We propose protected libraries as a new OS abstraction which provides separate user-level protection domains for different services (e.g., network and in-memory database), with performance approaching that of unprotected kernel bypass. We also show how this new feature can be utilized to enable sharing of data plane libraries across distrusting applications. Our proposed solution uses Intel's memory protection keys (PKU) in a safe way to change the permissions associated with subsets of a single address space. In addition, it uses hardware watch-points to delay asynchronous event delivery and to guarantee independent failure of applications sharing a protected library. We show that our approach can efficiently protect high-throughput in-memory databases and user-space network stacks. Our implementation allows up to 2.3 million library entrances per second per core, outperforming both kernellevel protection and two alternative implementations that use system calls and Intel's VMFUNC switching of user-level address spaces, respectively.« less
  4. Graph processing workloads are memory intensive with irregular access patterns and large memory footprint resulting in low data locality. Their popular software implementations typically employ either Push or Pull style propagation of changes through the graph over multiple iterations that follow the Bulk Synchronous Model. The performance of these algorithms on traditional computing systems is limited by random reads/writes of vertex values, synchronization overheads, and additional overheads for tracking active sets of vertices or edges across iterations. In this paper, we present GraphPulse, a hardware framework for asynchronous graph processing with event-driven scheduling that overcomes the performance limitations of softwaremore »frameworks. Event-driven computation model enables a parallel dataflow-style execution where atomic updates and active sets tracking are inherent to the model; thus, scheduling complexity is reduced and scalability is enhanced. The dataflow nature of the architecture also reduces random reads of vertex values by carrying the values in the events themselves. We capitalize on the update properties commonly present in graph algorithms to coalesce in-flight events and substantially reduce the event storage requirement and the processing overheads incurred. GraphPulse event-model naturally supports asynchronous graph processing, enabling substantially faster convergence by exploiting available parallelism, reducing work, and eliminating synchronization at iteration boundaries. The framework provides easy to use programming interface for faster development of hardware graph accelerators. A single GraphPulse accelerator achieves up to 74x speedup (28x on average) over Ligra, a state of the art software framework, running on a 12 core CPU. It also achieves an average of 6.2x speedup over Graphicionado, a state of the art graph processing accelerator.« less
  5. Container systems (e.g., Docker) provide a well-defined, lightweight, and versatile foundation to streamline the process of tool deployment, to provide a consistent and repeatable experimental interface, and to leverage data centers in the global cloud infrastructure as measurement vantage points. However, the virtual network devices commonly used to connect containers to the Internet are known to impose latency overheads which distort the values reported by measurement tools running inside containers. In this study, we develop a tool called MACE to measure and remove the latency overhead of virtual network devices as used by Docker containers. A key insight of MACEmore »is the fact that container functions all execute in the same kernel. Based on this insight, MACE is implemented as a Linux kernel module using the trace event subsystem to measure latency along the network stack code path. Using CloudLab, we evaluate MACE by comparing the ping measurements emitted from a slim-ping container to the ones emitted using the same tool running in the bare metal machine under varying traffic loads. Our evaluation shows that the MACE-adjusted RTT measurements are within 20 µs of the bare metal ping RTTs on average while incurring less than 25 µs RTT perturbation. We also compare RTT perturbation incurred by MACE with perturbation incurred by the built-in ftrace kernel tracing system and find that MACE incurs less perturbation.« less