skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry
Abstract. Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co station (90°57′E, 30°46′N; 4730ma.s.l.) at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign was  ∼ 2.0µgm−3, with organics accounting for 68%, followed by sulfate (15%), black carbon (8%), ammonium (7%), and nitrate (2%). Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA), with an oxygen-to-carbon ratio (O∕C) of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O∕C ratio of 0.72), and an average O∕C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the high-resolution mass spectra of OA identified two oxygenated organic aerosol (OOA) factors: a less oxidized OOA (LO-OOA) and a more oxidized OOA (MO-OOA). The MO-OOA dominated during the pre-monsoon period, whereas LO-OOA dominated during monsoon. The sensitivity of air mass transport during pre-monsoon with synoptic process was also evaluated with a 3-D chemical transport model.  more » « less
Award ID(s):
1743401
PAR ID:
10079655
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
18
Issue:
1
ISSN:
1680-7324
Page Range / eLocation ID:
427 to 443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study investigates the new particle formation (NPF) events at an urban location in the Eastern Mediterranean. Particle size distribution, particulate chemical composition, and gaseous pollutants were monitored in Rehovot, Israel (31°53″N 34°48″E) during two campaigns: from April 29 to 3 May 2021 (Campaign 1) and from May 3 to 11 May 2023 (Campaign 2), coinciding with an intensive bonfire burning festival. The organic aerosols (OA) source apportionment identified two major factors—Hydrocarbon‐like OA and Biomass‐burning OA—as well as two secondary factors—MO‐OOA (more oxidized‐oxygenated OA) and LO‐OOA (low oxidized oxygenated OA). NPF events were frequently observed during the day (mostly well‐defined nucleation events) and at night (burst of ultrafine mode particles without any discernible growth). A condensation sink value of (9.4 ± 4.0) × 10−3 s−1during Campaign 1 and (14.2 ± 6.0) × 10−3 s−1during Campaign 2 was obtained. The daytime events were associated with enhanced sulfuric acid proxy concentrations of (2–12) × 106molecules cm−3, suggesting the role of gas‐phase photochemistry in promoting NPF. A novel approach of hybrid positive matrix factorization analysis was used to deconvolve the chemical species responsible for the observed events. The results suggest the involvement of multiple components, including ammonium sulfate and MO‐OOA, in the nucleation; Nitrate, HOA and LO‐OOA participate in the subsequent particle growth for the daytime events. Nighttime events involve only semi‐volatile species (LO‐OOA, HOA and nitrate) along with ammonium sulfate. 
    more » « less
  2. Abstract. Airborne and ground-based measurements of aerosol concentrations, chemicalcomposition, and gas-phase precursors were obtained in three valleys innorthern Utah (USA). The measurements were part of the Utah Winter FineParticulate Study (UWFPS) that took place in January–February 2017. Totalaerosol mass concentrations of PM1 were measured from a Twin Otteraircraft, with an aerosol mass spectrometer (AMS). PM1 concentrationsranged from less than 2µgm−3 during clean periods to over100µgm−3 during the most polluted episodes, consistent withPM2.5 total mass concentrations measured concurrently at groundsites. Across the entire region, increases in total aerosol mass above∼2µgm−3 were associated with increases in theammonium nitrate mass fraction, clearly indicating that the highest aerosolmass loadings in the region were predominantly attributable to an increase inammonium nitrate. The chemical composition was regionally homogenous fortotal aerosol mass concentrations above 17.5µgm−3, with 74±5% (average±standard deviation) ammonium nitrate, 18±3%organic material, 6±3% ammonium sulfate, and 2±2%ammonium chloride. Vertical profiles of aerosol mass and volume in the regionshowed variable concentrations with height in the polluted boundary layer.Higher average mass concentrations were observed within the first few hundredmeters above ground level in all three valleys during pollution episodes. Gas-phase measurements of nitric acid (HNO3) and ammonia (NH3) duringthe pollution episodes revealed that in the Cache and Utah valleys, partitioningof inorganic semi-volatiles to the aerosol phase was usually limited by theamount of gas-phase nitric acid, with NH3 being in excess. The inorganicspecies were compared with the ISORROPIA thermodynamic model. Total inorganicaerosol mass concentrations were calculated for various decreases in totalnitrate and total ammonium. For pollution episodes, our simulations of a50% decrease in total nitrate lead to a 46±3% decrease in totalPM1 mass. A simulated 50% decrease in total ammonium leads to a36±17%µgm−3 decrease in total PM1 mass, over the entirearea of the study. Despite some differences among locations, ourresults showed a higher sensitivity to decreasing nitric acid concentrationsand the importance of ammonia at the lowest total nitrate conditions. In theSalt Lake Valley, both HNO3 and NH3 concentrations controlledaerosol formation. 
    more » « less
  3. Abstract. This study describes a modeling framework, model evaluation, and source apportionment to understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the Community Multiscale Air Quality (CMAQ) model with a high spatial resolution (1 km × 1 km). The updates include dynamic traffic emissions based on real-time, on-road information and recent emission factors and secondary organic aerosol (SOA) schemes to represent volatile chemical products (VCPs). Meteorology is well predicted compared to ground-based observations, and the emission rates from multiple sources (i.e., on-road, volatile chemical products, area, point, biogenic, and sea spray) are quantified. Evaluation of the CMAQ model shows that ozone is well predicted despite inaccuracies in nitrogen oxide (NOx) predictions. Particle matter (PM) is underpredicted compared to concurrent measurements made with an aerosol mass spectrometer (AMS) in Pasadena. Inorganic aerosol is well predicted, while SOA is underpredicted. Modeled SOA consists of mostly organic nitrates and products from oxidation of alkane-like intermediate volatility organic compounds (IVOCs) and has missing components that behave like less-oxidized oxygenated organic aerosol (LO-OOA). Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated (VOC-sensitive), with the largest sensitivity of O3 to changes in VOCs in the urban core. Differing oxidative capacities in different regions impact the nonlinear chemistry leading to PM and SOA formation, which is quantified in this study. 
    more » « less
  4. Abstract. Although the collapses of several Neolithic cultures in China areconsidered to have been associated with abrupt climate change during the4.2kaBP event (4.2–3.9kaBP), the timing and nature of this event andthe spatial distribution of precipitation between northern and southern Chinaare still controversial. The hydroclimate of this event insoutheastern China is still poorly known, except for a few published recordsfrom the lower reaches of the Yangtze River. In this study, a high-resolutionrecord of monsoon precipitation between 5.3 and 3.57kaBP based on astalagmite from Shennong Cave, Jiangxi Province, southeast China, ispresented. Coherent variations in δ18O and δ13Creveal that the climate in this part of China was dominantly wet between 5.3and 4.5kaBP and mostly dry between 4.5 and 3.57kaBP, interrupted by awet interval (4.2–3.9kaBP). A comparison with other records frommonsoonal China suggests that summer monsoon precipitation decreased innorthern China but increased in southern China during the 4.2kaBP event.We propose that the weakened East Asian summer monsoon controlled by thereduced Atlantic Meridional Overturning Circulation resulted in thiscontrasting distribution of monsoon precipitation between northern andsouthern China. During the 4.2kaBP event the rain belt remained longer atits southern position, giving rise to a pronounced humidity gradient betweennorthern and southern China. 
    more » « less
  5. Abstract. Chlorine-initiated oxidation of n-alkanes (C8−12) under high-nitrogen oxide conditions was investigated. Observed secondary organic aerosol yields (0.16 to 1.65) are higher than those for OH-initiated oxidation of C8−12 alkanes (0.04 to 0.35). A high-resolution time-of-flight chemical ionization mass spectrometer coupled to a Filter Inlet for Gases and AEROsols (FIGAERO–CIMS) was used to characterize the gas- and particle-phase molecular composition. Chlorinated organics were observed, which likely originated from chlorine addition to the double bond present on the heterogeneously produced dihydrofurans. A two-dimensional thermogram representation was developed to visualize the composition and relative volatility of organic aerosol components using unit-mass resolution data. Evidence of oligomer formation and thermal decomposition was observed. Aerosol yield and oligomer formation were suppressed under humid conditions (35% to 67% RH) relative to dry conditions (under 5% RH). The temperature at peak desorption signal, Tmax, a proxy for aerosol volatility, was shown to change with aerosol filter loading, which should be constrained when evaluating aerosol volatilities using the FIGAERO–CIMS. Results suggest that long-chain anthropogenic alkanes could contribute significantly to ambient aerosol loading over their atmospheric lifetime. 
    more » « less