skip to main content

Title: GeneSys: Enabling Continuous Learning through Neural Network Evolution in Hardware
Modern deep learning systems rely on (a) a handtuned neural network topology, (b) massive amounts of labelled training data, and (c) extensive training over large-scale compute resources to build a system that can perform efficient image classification or speech recognition. Unfortunately, we are still far away from implementing adaptive general purpose intelligent systems which would need to learn autonomously in unknown environments and may not have access to some or any of these three components. Reinforcement learning and evolutionary algorithm (EA) based methods circumvent this problem by continuously interacting with the environment and updating the models based on obtained rewards. However, deploying these algorithms on ubiquitous autonomous agents at the edge (robots/drones) demands extremely high energy-efficiency due to (i) tight power and energy budgets, (ii) continuous / lifelong interaction with the environment, (iii) intermittent or no connectivity to the cloud to offloadheavy-weight processing. To address this need, we present GENESYS, a HW-SW prototype of a EA-based learning system, that comprises of a closed loop learning engine called EvE and an inference engine called ADAM. EvE can evolve the topology and weights of neural networks completely in hardware for the task at hand, without requiring hand-optimization or backpropogation training. ADAM continuously interacts with the environment and is optimized for efficiently running the irregular neural networks generated by EvE. GENESYS identifies and leverages multiple unique avenues of parallelism unique to EAs that we term “gene”- level parallelism, and “population”-level parallelism. We ran GENESYS with a suite of environments from OpenAI gym and observed 2-5 orders of magnitude higher energy-efficiency over state-of-the-art embedded and desktop CPU and GPU systems.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual IEEE/ACM International Symposium on Microarchitecture Workshops
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generative Adversarial Network (GAN) has emerged as one of the most promising semi-supervised learning methods where two neural nets train themselves in a competitive environment. In this paper, as far as we know, we are the first to present a statistically trained Ternarized Generative Adversarial Network (TGAN) with fully ternarized weights (i.e. -1,0,+1) to massively reduce the need for computation and storage resources in the conventional GAN structures. In the proposed TGAN, the computationally expensive convolution operations (i.e. Multiplication and Accumulation) in both generator and discriminator's forward path are converted into hardware-friendly Addition/Subtraction operations. Accordingly, we propose a Processing-in-Memory accelerator for TGAN called (PIM-TGAN) based on Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) computational sub-arrays to efficiently accelerate the training process of GAN within non-volatile memory. In addition, we propose a parallelism technique to further enhance the training efficiency of TGAN. Our device-to-architecture co-simulation results show that, with almost the same inception score to the baseline GAN with floating point number weights on different data-sets, the proposed PIM-TGAN can obtain ~25.6× better energy-efficiency and 22× speedup compared to GPU platform averagely, and, 9.2× better energy-efficiency and 5.4× speedup over the best processing-in-ReRAM accelerators. 
    more » « less
  2. Generative Adversarial Networks (GANs) have recently drawn tremendous attention in many artificial intelligence (AI) applications including computer vision, speech recognition, and natural language processing. While GANs deliver state-of-the-art performance on these AI tasks, it comes at the cost of high computational complexity. Although recent progress demonstrated the promise of using ReRMA-based Process-In-Memory for acceleration of convolutional neural networks (CNNs) with low energy cost, the unique training process required by GANs makes them difficult to run on existing neural network acceleration platforms: two competing networks are simultaneously co-trained in GANs, and hence, significantly increasing the need of memory and computation resources. In this work, we propose ReGAN – a novel ReRAM-based Process-In-Memory accelerator that can efficiently reduce off-chip memory accesses. Moreover, ReGAN greatly increases system throughput by pipelining the layer-wise computation. Two techniques, namely, Spatial Parallelism and Computation Sharing are particularly proposed to further enhance training efficiency of GANs. Our experimental results show that ReGAN can achieve 240X performance speedup compared to GPU platform averagely, with an average energy saving of 94X. 
    more » « less
  3. null (Ed.)
    Abstract Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs hardware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D 2 NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables first-of-its-like real-time multi-task learning in D 2 2NNs that automatically recognizes which task is being deployed in real-time. Our experimental results demonstrate significant improvements in versatility, hardware efficiency, and also demonstrate and quantify the robustness of proposed multi-task D 2 NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task. 
    more » « less
  4. Conventionally, DNN models are trained once in the cloud and deployed in edge devices such as cars, robots, or unmanned aerial vehicles (UAVs) for real-time inference. However, there are many cases that require the models to adapt to new environments, domains, or users. In order to realize such domain adaption or personalization, the models on devices need to be continuously trained on the device. In this work, we design EF-Train, an efficient DNN training accelerator with a unified channel-level parallelism-based convolution kernel that can achieve end-to-end training on resource-limited low-power edge-level FPGAs. It is challenging to implement on-device training on resource-limited FPGAs due to the low efficiency caused by different memory access patterns among forward and backward propagation and weight update. Therefore, we developed a data reshaping approach with intra-tile continuous memory allocation and weight reuse. An analytical model is established to automatically schedule computation and memory resources to achieve high energy efficiency on edge FPGAs. The experimental results show that our design achieves 46.99 GFLOPS and 6.09 GFLOPS/W in terms of throughput and energy efficiency, respectively. 
    more » « less
  5. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less