skip to main content


Title: Simultaneous 6300 Å airglow and radar observations of ionospheric irregularities and dynamics at the geomagnetic equator

Abstract. In March 2014 an all-sky imager (ASI) was installed at the Jicamarca Radio Observatory (11.95°S, 76.87°W; 0.3°S MLAT). We present results of equatorial spread F (ESF) characteristics observed at Jicamarca and at low latitudes. Optical 6300 and 7774Å airglow observations from the Jicamarca ASI are compared with other collocated instruments and with ASIs at El Leoncito, Argentina (31.8°S, 69.3°W; 19.8°S MLAT), and Villa de Leyva, Colombia (5.6°N, 73.52°W; 16.4°N MLAT). We use Jicamarca radar data, in incoherent and coherent modes, to obtain plasma parameters and detect echoes from irregularities. We find that ESF depletions tend to appear in groups with a group-to-group separation around 400–500km and within-group separation around 50–100km. We combine data from the three ASIs to investigate the conditions at Jicamarca that could lead to the development of high-altitude, or topside, plumes. We compare zonal winds, obtained from a Fabry–Pérot interferometer, with plasma drifts inferred from the zonal motion of plasma depletions. In addition to the ESF studies we also investigate the midnight temperature maximum and its effects at higher latitudes, visible as a brightness wave at El Leoncito. The ASI at Jicamarca along with collocated and low-latitude instruments provide a clear two-dimensional view of spatial and temporal evolution of ionospheric phenomena at equatorial and low latitudes that helps to explain the dynamics and evolution of equatorial ionospheric/thermospheric processes.

 
more » « less
Award ID(s):
1659304
NSF-PAR ID:
10080303
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Annales Geophysicae
Volume:
36
Issue:
2
ISSN:
1432-0576
Page Range / eLocation ID:
473 to 487
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    630.0 nm all-sky imaging data are used to detect airglow depletions associated with equatorial spread F. Pairs of imagers located at geomagnetically conjugate locations in the American sector at low and mid-latitudes provide information on the occurrence rate and zonal motion of airglow depletions. Airglow depletions are seen extending to magnetic latitudes as high as 25°. An asymmetric extension is observed with structures in the northern hemisphere reaching higher latitudes. By tracking the zonal motion of airglow depletions, zonal plasma drifts in the thermosphere can be inferred and their simultaneous behavior in both hemispheres investigated. Case studies using El Leoncito and Mercedes imagers in the southern hemisphere, and the respective magnetically conjugate imagers at Villa de Leyva and Arecibo, provide consistent evidence of the influence of the South Atlantic Magnetic Anomaly on the dynamics and characteristics of the thermosphere–ionosphere system at low and mid-latitudes. 
    more » « less
  2. Abstract We introduce a new numerical model developed to assist with Data Interpretation and Numerical Analysis of ionospheric Missions and Observations (DINAMO). DINAMO derives the ionospheric electrostatic potential at low- and mid-latitudes from a two-dimensional dynamo equation and user-specified inputs for the state of the ionosphere and thermosphere (I–T) system. The potential is used to specify the electric fields and associated F -region E × B plasma drifts. Most of the model was written in Python to facilitate the setup of numerical experiments and to engage students in numerical modeling applied to space sciences. Here, we illustrate applications and results of DINAMO in two different analyses. First, DINAMO is used to assess the ability of widely used I–T climatological models (IRI-2016, NRLMSISE-00, and HWM14), when used as drivers, to produce a realistic representation of the low-latitude electrodynamics. In order to evaluate the results, model E × B drifts are compared with observed climatology of the drifts derived from long-term observations made by the Jicamarca incoherent scatter radar. We found that the climatological I–T models are able to drive many of the features of the plasma drifts including the diurnal, seasonal, altitudinal and solar cycle variability. We also identified discrepancies between modeled and observed drifts under certain conditions. This is, in particular, the case of vertical equatorial plasma drifts during low solar flux conditions, which were attributed to a poor specification of the E -region neutral wind dynamo. DINAMO is then used to quantify the impact of meridional currents on the morphology of F -region zonal plasma drifts. Analytic representations of the equatorial drifts are commonly used to interpret observations. These representations, however, commonly ignore contributions from meridional currents. Using DINAMO we show that that these currents can modify zonal plasma drifts by up to ~ 16 m/s in the bottom-side post-sunset F -region, and up to ~ 10 m/s between 0700 and 1000 LT for altitudes above 500 km. Finally, DINAMO results show the relationship between the pre-reversal enhancement (PRE) of the vertical drifts and the vertical shear in the zonal plasma drifts with implications for equatorial spread F. 
    more » « less
  3. Abstract

    We describe a mode for two-dimensional UHF (445 MHz) radar observations ofF-region irregularities using the 14-panel version of the advanced modular incoherent scatter radar (AMISR-14). We also present and discuss examples of observations made by this mode. AMISR-14 is installed at the Jicamarca Radio Observatory (JRO, 11.95°S, 76.87°W, ~ 0.5° dip latitude) in Peru and, therefore, allows studies of ionospheric irregularities at the magnetic equator. The new mode takes advantage of the electronic beam-steering capability of the system to scan the equatorialF-region in the east–west direction. Therefore, it produces two-dimensional views of the spatial distribution of sub-meter field-aligned density irregularities in the magnetic equatorial plane. The scans have a temporal resolution of 20 s and allow observations over a zonal distance of approximately 400 km at mainF-region heights. While the system has a lower angular and range resolution than interferometric in-beam VHF radar imaging observations available at Jicamarca, it allows a wider field-of-view than that allowed with the VHF system. Here, we describe the mode, and present and discuss examples of observations made with the system. We also discuss implications of these observations for studies of ESF at the JRO.

    Graphical abstract

     
    more » « less
  4. Abstract

    Most of the low‐latitude ionospheric radar observations in South America come from the Jicamarca Radio Observatory, located in the western longitude sector (∼75°W). The deployment of the 30 MHz FAPESP‐Clemson‐INPE (FCI) coherent backscatter radar in the magnetic equatorial site of São Luis, Brazil, in 2001 allowed observations to be made in the eastern sector (∼45°W). However, despite being operational for several years (2001–2012), FCI only made observations during daytime and pre‐midnight hours, with a few exceptions. Here, we describe an upgraded system that replaced the FCI radar and present results of full‐nightF‐region observations. This radar is referred to as Measurements of Equatorial and Low‐latitude Ionospheric irregularities over São Luís, South America (MELISSA), and made observations between March 2014 and December 2018. We present results of our analyses of pre‐ and post‐midnightF‐region echoes with focus on the spectral features of post‐midnight echoes and how they compare to spectra of echoes observed in the post‐sunset sector. The radar observations indicate that post‐midnightF‐region irregularities were generated locally and were not a result of “fossil” structures generated much earlier in time (in other longitude sectors) and that drifted into the radar field‐of‐view. This also includes cases where the echoes are weak and that would be associated with decaying equatorial spreadF(ESF) structures. Collocated digisonde observations show modest but noticeableF‐region apparent uplifts prior to post‐midnight ESF events. We associate the equatorial uplifts with disturbed dynamo effects and with destabilizingF‐region conditions leading to ESF development.

     
    more » « less
  5. Abstract

    We analyze horizontal plasma drifts measured by the Defense Meteorological Satellite Program satellites during two intense magnetic storms. It is found, for the first time, that westward plasma flows associated with subauroral polarization streams (SAPS) in the dusk‐evening sector penetrate continuously to equatorial latitudes. The westward ion drifts between subauroral and equatorial latitudes occur nearly simultaneously. The latitudinal profile of the westward ion drifts at low latitudes (approximately within ±30° magnetic latitude [MLat]) is relatively flat, and the westward ion drifts at the magnetic equator reach 200–300 m s−1. In the dawn‐morning sector, eastward ion drifts at subauroral latitudes are also SAPS. The storm‐time dawnside auroral boundary moves to ∼±55° MLat, and the dawnside SAPS penetrate to ∼±20° MLat at 0930 local time. A dawnside SAPS flow channel appears to exist, although it is not as well defined as the duskside SAPS flow channel. Thermospheric wind data measured by the Challenging Minisatellite Payload satellite are analyzed, and zonal disturbance winds are derived. Disturbance winds can reach equatorial latitudes rapidly near midnight but are limited to ±40° geographic latitude or higher near noon. The effects of disturbance winds on the zonal ion drifts at middle and low latitudes are discussed. It is suggested that both the westward ion drifts at middle and low latitudes in the dusk‐evening sector and the eastward ion drifts at middle and lower latitudes in the dawn‐morning sector are caused primarily by penetration of the SAPS and auroral electric fields.

     
    more » « less