A unique paradox exists between the early and modern architectural and mechanical means of dealing with humidity in and around buildings. Traditional architectural conditions of biopolymeric thatch dwellings accommodated human thermal comfort through dehumidification by the materials employed at the building envelope. Original mechanical developments for dehumidification processes were developed specifically for removing moisture from materials in industrial applications. However, today, the modes by which humidity is treated for human comfort and material protection is inverted: buildings now utilize mechanical conditioning for dehumidification cooling functions and moisture protective materials in the building enclosure systems. Emerging multivalent hydrophilic materials are able to process humidity and moisture transport in new ways to allow for a systemic return to dehumidification cooling functions integrated in the building envelope system. The hydrophilic polymers are synthesized with low energy methods and poured into molds and then lyophilized to create macroporous networks that enhance both the sorption and thermal characteristics in the proposed application. The thermal and optical properties of novel hygrothermal materials are identified and used as inputs for simulation modeling for the proposed multivalent building enclosure system. The initial results provide improvements on annual energy loads and consumption for hot-humid climate conditions (Miami and Mumbai). The introduction of a sorption coefficient for the dehumidification function provides a unique contribution to design and performance analyses of double-skin envelopes. In addition, the dynamic modeling for temporal variations of material properties at the envelope also provides a new contribution to the field of building performance simulation. The challenges of these novel modes for moisture processing in the building envelope materials are addressed, with future work required for microbial identification and monitoring. The advantages from initial analytical and simulation modeling convey improvements for building energy conservation, natural daylighting, and water recuperation potential.
more »
« less
Multivalent Analysis of Double-Skin Envelope Dynamic Hygrothermal Louver System
This research introduces a novel lyophilized hydrogel for double-skin envelope (DSE) integration as a dynamic louver system to provide dehumidification of moisture, daylighting modulation, and recuperation of water condensate. The work links empirical experiments for thermal, optical, and sorption properties of the hygrothermal materials alongside system scale analytical models to inform energy and water conservation measures. The system scale analyses are conducted with LBNL WINDOW7 in combination with numerical analytical models, in addition to select computational fluid dynamic (CFD) studies for development of louver geometries to optimize sorption effectiveness in the DSE cavity airstream. Effective heat transfer and visible transmittance values for the dynamic states of the DSE hygrothermal louver system are then linked to building scale analyses in the Rhino- Grasshopper platform using the Honeybee plug-in to run EnergyPlus. The dynamic state envelope system is assessed through annual integration modeling for hothumid climate conditions. The work introduces new aspects in simulation modeling with integration of the standard mechanical air-handling system functions to be coupled with multi-state dynamic properties for the envelope system in building scale analyses. A sorption coefficient is identified for analytical modeling of the DSE hygrothermal louver cavity thermodynamics. The work also integrates a new calculation tool in the simulation platform for evaluating potential water recuperation
more »
« less
- Award ID(s):
- 1650671
- PAR ID:
- 10080789
- Date Published:
- Journal Name:
- SimAUD 2018 Society for Modeling and Simulation International
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large-scale concrete 3D printing and digital construction has brought enormous potential to expand the design space of building components (e.g., building envelope) for the integration of multiple architectural functionalities including energy saving. In this research, a modular 3D printed vertical concrete green wall system – namely the 3D-VtGW, was developed. The 3D-VtGW envelope was assembled with prefabricated (3D printed) multifunctional wall modular elements, which serves as the enclosure of the building as well as the backbone for a green wall system to improve building’s energy efficiency. Using this design concept and large-scale concrete 3D printing, a prototype commercial building was built in Nanjing, China. To quantify the energy-saving potential of the 3D-VtGW system, a thermal network model was developed to simulate the thermal behavior of buildings with 3D-VtGW system and for thermal comfort analysis. Whole-building energy simulation was carried out using Chinese Standard Weather Data (CSWD) o Nanjing, China. The simulation results indicate that the building with 3D-VtGW exhibited prominent potential for energy saving and improved thermal comfort. The integrated greenery system in 3D-VtGW largely reduces wall exterior surface temperature and through-wall heat flux via the combined effects of plant shading, evapotranspiration, and heat storage from soil. This study presents the immense opportunities brought by digital fabrication and construction to extend the design space and function integration in buildings.more » « less
-
Abstract Silicon carbide is evolving as a prominent solid-state platform for the realization of quantum information processing hardware. Angle-etched nanodevices are emerging as a solution to photonic integration in bulk substrates where color centers are best defined. We model triangular cross-section waveguides and photonic crystal cavities using Finite-Difference Time-Domain and Finite-Difference Eigensolver approaches. We analyze optimal color center positioning within the modes of these devices and provide estimates on achievable Purcell enhancement in nanocavities with applications in quantum communications. Using open quantum system modeling, we explore emitter-cavity interactions of multiple non-identical color centers coupled to both a single cavity and a photonic crystal molecule in SiC. We observe polariton and subradiant state formation in the cavity-protected regime of cavity quantum electrodynamics applicable in quantum simulation.more » « less
-
Observability and detectability analyses are often used to guide the measurement setup and select the estimation models used in dynamic state estimation (DSE). Yet, marginally observable states of a synchronous machine prevent the direct application of conventional observability and detectability analyses in determining the existence of a DSE observer. To address this issue, the authors propose to identify the marginally observable states and their associate eigenvalues by finding the smallest perturbation matrices that make the system unobservable. The proposed method extends the observability and detectability analyses to marginally observable estimation models, often encountered in the DSE of a synchronous machine. The effectiveness and application of the proposed method are illustrated on the IEEE 10-machine 39-bus system, verified using the unscented Kalman filter and the extended Kalman filter, and compared with conventional methods. The proposed analysis method can be applied to guide the selection of estimation models and measurements to determine the existence of a DSE observer in power-system planning.more » « less
-
To provide energy-efficient space heating and cooling, a thermoelectric building envelope (TBE) embeds thermoelectric devices in building walls. The thermoelectric device in the building envelope can provide active heating and cooling without requiring refrigerant use and energy transport among subsystems. Thus, the TBE system is energy and environmentally friendly. A few studies experimentally investigated the TBE under limited operating conditions, and only simplified models for the commercial thermoelectric module (TEM) were developed to quantify its performance. A holistic approach to optimum system performance is needed for the optimal system design and operation. The study developed a holistic TBE-building system model in Modelica for system simulation and performance analysis. A theoretical model for a single TEM was first established based on energy conversion and thermoelectric principles. Subsequently, a TBE prototype model combining the TEM model was constructed. The prototype model employing a feedback controller was used in a whole building system simulation for a residential house. The system model computed the overall building energy efficiency and dynamic indoor conditions under varying operating conditions. Simulation results indicate the studied TBE system can meet a heating demand to maintain the desired room temperature at 20 °C when the lowest outdoor temperature is at -26.3 °C, with a seasonal heating COP near 1.1, demonstrating a better heating performance than electric heaters. It suggests a potential energy-efficient alternative to the traditional natural gas furnaces and electric heaters for space heating.more » « less
An official website of the United States government

