This work investigates the robot state estimation problem within a non-inertial environment. The proposed state estimation approach relaxes the common assumption of static ground in the system modeling. The process and measurement models explicitly treat the movement of the non-inertial environments without requiring knowledge of its motion in the inertial frame or relying on GPS or sensing environmental landmarks. Further, the proposed state estimator is formulated as an invariant extended Kalman filter (InEKF) [1] with the deterministic part of its process model obeying the groupaffine property, leading to log-linear error dynamics. The observability analysis confirms the robot’s pose (i.e., position and orientation) and velocity relative to the non-inertial environment are observable under the proposed InEKF.
more »
« less
Observability and detectability analyses for dynamic state estimation of the marginally observable model of a synchronous machine
Observability and detectability analyses are often used to guide the measurement setup and select the estimation models used in dynamic state estimation (DSE). Yet, marginally observable states of a synchronous machine prevent the direct application of conventional observability and detectability analyses in determining the existence of a DSE observer. To address this issue, the authors propose to identify the marginally observable states and their associate eigenvalues by finding the smallest perturbation matrices that make the system unobservable. The proposed method extends the observability and detectability analyses to marginally observable estimation models, often encountered in the DSE of a synchronous machine. The effectiveness and application of the proposed method are illustrated on the IEEE 10-machine 39-bus system, verified using the unscented Kalman filter and the extended Kalman filter, and compared with conventional methods. The proposed analysis method can be applied to guide the selection of estimation models and measurements to determine the existence of a DSE observer in power-system planning.
more »
« less
- Award ID(s):
- 1845523
- PAR ID:
- 10316659
- Date Published:
- Journal Name:
- IET Generation, Transmission & Distribution
- ISSN:
- 1751-8687
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Bayesian approach has been used for the dynamic state estimation (DSE) of a power system. However, due to the complexity of noise resources, it is difficult to quantify measurement and process noise using probability density functions (PDFs). To overcome the difficulty, the authors of this article propose a modified eigen-decomposition-based interval analysis (MEDIA) method, which employs bounds instead of PDFs to quantify the noise, and uses the eigen decomposition method to reduce the negative impact of the overestimation problem. Using the simulation data generated from IEEE 16-machine and IEEE 10-machine systems, it is shown that the proposed MEDIA method can estimate the hard boundaries of dynamic states in real time. Comparison with the forward-backward propagation method and the extended set-membership filter also shows that the proposed MEDIA method performs better by providing narrower boundaries in the DSE.more » « less
-
The lithium iron phosphate (LFP) battery has more nonlinear characteristic than other battery type. For this reason, when we use electrical equivalent circuit model and the extended Kalman filter (EKF) for estimating the SOC, the estimation performance can be decreased in the nonlinear region. This paper proposes an advance estimation method of state of charge (SOC) for lithium iron phosphate (LFP) batteries. To improve the model accuracy, this paper utilizes the nonlinear observer for identifying the internal parameters of batteries. Furthermore, to reduce the nonlinear effect of the LFP batteries, this paper recast the Kalman process. Therefore, through the proposed method, the performance of SOC estimation can be more accurate and the computational burden is decreased when we apply the embedded system.more » « less
-
Legged robots require knowledge of pose and velocity in order to maintain stability and execute walking paths. Current solutions either rely on vision data, which is susceptible to environmental and lighting conditions, or fusion of kinematic and contact data with measurements from an inertial measurement unit (IMU). In this work, we develop a contact-aided invariant extended Kalman filter (InEKF) using the theory of Lie groups and invariant observer design. This filter combines contact-inertial dynamics with forward kinematic corrections to estimate pose and velocity along with all current contact points. We show that the error dynamics follows a log-linear autonomous differential equation with several important consequences: (a) the observable state variables can be rendered convergent with a domain of attraction that is independent of the system’s trajectory; (b) unlike the standard EKF, neither the linearized error dynamics nor the linearized observation model depend on the current state estimate, which (c) leads to improved convergence properties and (d) a local observability matrix that is consistent with the underlying nonlinear system. Furthermore, we demonstrate how to include IMU biases, add/remove contacts, and formulate both world-centric and robo-centric versions. We compare the convergence of the proposed InEKF with the commonly used quaternion-based extended Kalman filter (EKF) through both simulations and experiments on a Cassie-series bipedal robot. Filter accuracy is analyzed using motion capture, while a LiDAR mapping experiment provides a practical use case. Overall, the developed contact-aided InEKF provides better performance in comparison with the quaternion-based EKF as a result of exploiting symmetries present in system.more » « less
-
This study proposes a novel flexible hybrid state estimation (SE) algorithm when a realistic communication system with its irregularities is taken into account. This system is modelled by the Network Simulator 2 software tool, which is also used to calculate communication delays and packet drop probabilities. Within this setup, the system observability can be predicted, and the proposed SE can decide between using the static SE (SSE) or the discrete Kalman filter plus SSE‐based measurements and time alignment (Forecasting‐aided SE). Flexible hybrid SE (FHSE) incorporates both phasor measurement units and supervisory control and data acquisition‐based measurements, with different time stamps. The proposed FHSE with detailed modelling of the communication system is motivated by: (i) well‐known issues in SSE (time alignment of the measurements, frequent un‐observability for fixed SE time stamps etc.); and (ii) the need to model a realistic communication system (calculated communication delays and packet drop probabilities are a part of the proposed FHSE). Application of the proposed algorithm is illustrated for examples with time‐varying bus load/generation on two IEEE test cases: 14‐bus and 300‐bus.more » « less
An official website of the United States government

