skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detecting Outliers in Data with Correlated Measures
Advances in sensor technology have enabled the collection of largescale datasets. Such datasets can be extremely noisy and often contain a significant amount of outliers that result from sensor malfunction or human operation faults. In order to utilize such data for real-world applications, it is critical to detect outliers so that models built from these datasets will not be skewed by outliers. In this paper, we propose a new outlier detection method that utilizes the correlations in the data (e.g., taxi trip distance vs. trip time). Different from existing outlier detection methods, we build a robust regression model that explicitly models the outliers and detects outliers simultaneously with the model fitting. We validate our approach on real-world datasets against methods specifically designed for each dataset as well as the state of the art outlier detectors. Our outlier detection method achieves better performances, demonstrating the robustness and generality of our method. Last, we report interesting case studies on some outliers that result from atypical events.  more » « less
Award ID(s):
1702760 1544455 1054389
PAR ID:
10080790
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 27th ACM International Conference on Information and Knowledge Management
Page Range / eLocation ID:
287 to 296
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Outlier detection is critical in real world. Due to the existence of many outlier detection techniques which often return different results for the same data set, the users have to address the problem of determining which among these techniques is the best suited for their task and tune its parameters. This is particularly challenging in the unsupervised setting, where no labels are available for cross-validation needed for such method and parameter optimization. In this work, we propose AutoOD which uses the existing unsupervised detection techniques to automatically produce high quality outliers without any human tuning. AutoOD's fundamentally new strategy unifies the merits of unsupervised outlier detection and supervised classification within one integrated solution. It automatically tests a diverse set of unsupervised outlier detectors on a target data set, extracts useful signals from their combined detection results to reliably capture key differences between outliers and inliers. It then uses these signals to produce a "custom outlier classifier" to classify outliers, with its accuracy comparable to supervised outlier classification models trained with ground truth labels - without having access to the much needed labels. On a diverse set of benchmark outlier detection datasets, AutoOD consistently outperforms the best unsupervised outlier detector selected from hundreds of detectors. It also outperforms other tuning-free approaches from 12 to 97 points (out of 100) in the F-1 score. 
    more » « less
  2. In this paper, we propose a Spatial Robust Mixture Regression model to investigate the relationship between a response variable and a set of explanatory variables over the spatial domain, assuming that the relationships may exhibit complex spatially dynamic patterns that cannot be captured by constant regression coefficients. Our method integrates the robust finite mixture Gaussian regression model with spatial constraints, to simultaneously handle the spatial non-stationarity, local homogeneity, and outlier contaminations. Compared with existing spatial regression models, our proposed model assumes the existence a few distinct regression models that are estimated based on observations that exhibit similar response-predictor relationships. As such, the proposed model not only accounts for non-stationarity in the spatial trend, but also clusters observations into a few distinct and homogenous groups. This provides an advantage on interpretation with a few stationary sub-processes identified that capture the predominant relationships between response and predictor variables. Moreover, the proposed method incorporates robust procedures to handle contaminations from both regression outliers and spatial outliers. By doing so, we robustly segment the spatial domain into distinct local regions with similar regression coefficients, and sporadic locations that are purely outliers. Rigorous statistical hypothesis testing procedure has been designed to test the significance of such segmentation. Experimental results on many synthetic and real-world datasets demonstrate the robustness, accuracy, and effectiveness of our proposed method, compared with other robust finite mixture regression, spatial regression and spatial segmentation methods. 
    more » « less
  3. Conformal prediction is a flexible framework for calibrating machine learning predictions, providing distribution-free statistical guarantees. In outlier detection, this calibration relies on a reference set of labeled inlier data to control the type-I error rate. However, obtaining a perfectly labeled inlier reference set is often unrealistic, and a more practical scenario involves access to a contaminated reference set containing a small fraction of outliers. This paper analyzes the impact of such contamination on the validity of conformal methods. We prove that under realistic, non-adversarial settings, calibration on contaminated data yields conservative type-I error control, shedding light on the inherent robustness of conformal methods. This conservativeness, however, typically results in a loss of power. To alleviate this limitation, we propose a novel, active data-cleaning framework that leverages a limited labeling budget and an outlier detection model to selectively annotate data points in the contaminated reference set that are suspected as outliers. By removing only the annotated outliers in this ``suspicious'' subset, we can effectively enhance power while mitigating the risk of inflating the type-I error rate, as supported by our theoretical analysis. Experiments on real datasets validate the conservative behavior of conformal methods under contamination and show that the proposed data-cleaning strategy improves power without sacrificing validity. 
    more » « less
  4. null (Ed.)
    The detection of abnormal moving objects over high-volume trajectory streams is critical for real-time applications ranging from military surveillance to transportation management. Yet this outlier detection problem, especially along both the spatial and temporal dimensions, remains largely unexplored. In this work, we propose a rich taxonomy of novel classes of neighbor-based trajectory outlier definitions that model the anomalous behavior of moving objects for a large range of real-time applications. Our theoretical analysis and empirical study on two real-world datasets—the Beijing Taxi trajectory data and the Ground Moving Target Indicator data stream—and one generated Moving Objects dataset demonstrate the effectiveness of our taxonomy in effectively capturing different types of abnormal moving objects. Furthermore, we propose a general strategy for efficiently detecting these new outlier classes called the minimal examination (MEX) framework. The MEX framework features three core optimization principles, which leverage spatiotemporal as well as the predictability properties of the neighbor evidence to minimize the detection costs. Based on this foundation, we design algorithms that detect the outliers based on these classes of new outlier semantics that successfully leverage our optimization principles. Our comprehensive experimental study demonstrates that our proposed MEX strategy drives the detection costs 100-fold down into the practical realm for applications that analyze high-volume trajectory streams in near real time. 
    more » « less
  5. Sensors are used to monitor various parameters in many real-world applications. Sudden changes in the underlying patterns of the sensors readings may represent events of interest. Therefore, event detection, an important temporal version of outlier detection, is one of the primary motivating applications in sensor networks. This work describes the implementation of a real-time outlier detection that uses an Autoencoder-LSTM neural-network accelerator implemented on the Xilinx PYNQ-Z1 development board. The implemented accelerator consists of a fine-tuned Autoencoder to extract the latent features in sensor data followed by a Long short-term memory (LSTM) network to predict the next step and detect outliers in real-time. The implemented design achieves 2.06 ms minimum latency and 85.9 GOp/s maximum throughput. The low latency and 0.25 W power consumption of the Autoencoder-LSTM outlier detector makes it suitable for resource-constrained computing platforms. 
    more » « less