skip to main content


Title: Role of dimethylsulfoniopropionate as an osmoprotectant following gradual salinity shifts in the sea-ice diatom Fragilariopsis cylindrus
Environmental contextDimethylsulfoniopropionate (DMSP), a small sulfur compound biosynthesised by algae, plays an important role in global climate, particularly in polar regions. We investigated salinity effects on DMSP levels, and provide the first experimental measurements of DMSP and associated physiological changes in a polar diatom across to a range of gradual salinity shifts representative of sea-ice conditions. Quantitative estimates of DMSP in polar diatoms following salinity changes will facilitate new mathematical models to predict seasonal responses and reactions to climate change.AbstractAlthough extreme environmental gradients within sea-ice have been proposed to stimulate dimethylsulfoniopropionate (DMSP) accumulation in diatoms, a taxa whose temperate counterparts show relatively low concentrations, this has yet to be experimentally validated across a range of salinities representative of sea-ice conditions. The present study examined changes in DMSP concentrations in the widespread polar diatom Fragilariopsis cylindrus in response to gradual salinity shifts representative of those encountered during sea-ice formation and melt. DMSP concentrations were elevated up to 127% in 70-salinity cultures. Low-salinity shifts decreased intracellular DMSP concentrations in a gradient-dependent manner that suggests DMSP recycling rather than release under milder hyposalinity shifts. Permeable membranes were detected in ~45% of 10-salinity cells; therefore, loss of membrane integrity may only partially explain DMSP release in the lowest-salinity group. Growth rates, photosynthetic efficiency of photosystem II and reactive oxygen species detection indicated only partial impairment by salinity stress in this organism. Thus, experimental evidence supports the role of DMSP as a compatible solute in the acclimation of a sea-ice diatom across large salinity gradients and measurements of associated physiological changes will improve interpretation of environmental measurements.  more » « less
Award ID(s):
0739446
NSF-PAR ID:
10081177
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Environmental Chemistry
Volume:
13
Issue:
2
ISSN:
1448-2517
Page Range / eLocation ID:
181
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Synopsis Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allows them to inhabit this highly variable environment characterized by extremes in temperature, salinity, and light. In addition to protecting them from extreme conditions, these compounds present a labile, nutrient-rich source of organic matter, and include precursors to climate active compounds (e.g., dimethyl sulfide [DMS]), which are likely regulated with environmental change. Here, intracellular concentrations of 45 metabolites were quantified in three sea-ice diatom species and were compared to two temperate diatom species, with a focus on compatible solutes and free amino acid pools. There was a large diversity of metabolite concentrations between diatoms with no clear pattern identifiable for sea-ice species. Concentrations of some compatible solutes (isethionic acid, homarine) approached 1 M in the sea-ice diatoms, Fragilariopsis cylindrus and Navicula cf. perminuta, but not in the larger sea-ice diatom, Nitzschia lecointei or in the temperate diatom species. The differential use of compatible solutes in sea-ice diatoms suggests different adaptive strategies and highlights which small organic compounds may be important in polar biogeochemical cycles. 
    more » « less
  2. Abstract Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA ( sed aDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sed aDNA damage analysis) metagenomic marine eukaryote sed aDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sed aDNA record of ~1 Mio. years and diatom and chlorophyte sed aDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO ). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sed aDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles. 
    more » « less
  3. Abstract

    Seasonal cycles within the marginal ice zones in polar regions include large shifts in temperature and salinity that strongly influence microbial abundance and physiology. However, the combined effects of concurrent temperature and salinity change on microbial community structure and biochemical composition during transitions between seawater and sea ice are not well understood. Coastal marine communities along the western Antarctic Peninsula were sampled and surface seawater was incubated at combinations of temperature and salinity mimicking the formation (cold, salty) and melting (warm, fresh) of sea ice to evaluate how these factors may shape community composition and particulate metabolite pools during seasonal transitions. Bacterial and algal community structures were tightly coupled to each other and distinct across sea-ice, seawater, and sea-ice-meltwater field samples, with unique metabolite profiles in each habitat. During short-term (approximately 10-day) incubations of seawater microbial communities under different temperature and salinity conditions, community compositions changed minimally while metabolite pools shifted greatly, strongly accumulating compatible solutes like proline and glycine betaine under cold and salty conditions. Lower salinities reduced total metabolite concentrations in particulate matter, which may indicate a release of metabolites into the labile dissolved organic matter pool. Low salinity also increased acylcarnitine concentrations in particulate matter, suggesting a potential for fatty acid degradation and reduced nutritional value at the base of the food web during freshening. Our findings have consequences for food web dynamics, microbial interactions, and carbon cycling as polar regions undergo rapid climate change.

     
    more » « less
  4. null (Ed.)
    The marine-based West Antarctic Ice Sheet (WAIS) is currently locally retreating because of shifting wind-driven oceanic currents that transport warm waters toward the ice margin, resulting in ice shelf thinning and accelerated mass loss. Previous results from geologic drilling on Antarctica’s continental margins show significant variability in ice sheet extent during the late Neogene and Quaternary. Climate and ice sheet models indicate a fundamental role for oceanic heat in controlling ice sheet variability over at least the past 20 My. Although evidence for past ice sheet variability is available from ice-proximal marine settings, sedimentary sequences from the continental shelf and rise are required to evaluate the extent of past ice sheet variability and the associated forcings and feedbacks. International Ocean Discovery Program Expedition 374 drilled a latitudinal and depth transect of five sites from the outer continental shelf to rise in the central Ross Sea to resolve Neogene and Quaternary relationships between climatic and oceanic change and WAIS evolution. The Ross Sea was targeted because numerical ice sheet models indicate that this sector of Antarctica responds sensitively to changes in ocean heat flux. Expedition 374 was designed for optimal data-model integration to enable an improved understanding of Antarctic Ice Sheet (AIS) mass balance during warmer-than-present climates (e.g., the Pleistocene “super interglacials,” the mid-Pliocene, and the Miocene Climatic Optimum). The principal goals of Expedition 374 were to: 1. Evaluate the contribution of West Antarctica to far-field ice volume and sea level estimates; 2. Reconstruct ice-proximal oceanic and atmospheric temperatures to quantify past polar amplification; 3. Assess the role of oceanic forcing (e.g., temperature and sea level) on AIS variability; 4. Identify the sensitivity of the AIS to Earth’s orbital configuration under a variety of climate boundary conditions; and 5. Reconstruct Ross Sea paleobathymetry to examine relationships between seafloor geometry, ice sheet variability, and global climate. To achieve these objectives, postcruise studies will: 1. Use data and models to reconcile intervals of maximum Neogene and Quaternary ice advance and retreat with far-field records of eustatic sea level; 2. Reconstruct past changes in oceanic and atmospheric temperatures using a multiproxy approach; 3. Reconstruct Neogene and Quaternary sea ice margin fluctuations and correlate these records to existing inner continental shelf records; 4. Examine relationships among WAIS variability, Earth’s orbital configuration, oceanic temperature and circulation, and atmospheric pCO2; and 5. Constrain the timing of Ross Sea continental shelf overdeepening and assess its impact on Neogene and Quaternary ice dynamics. Expedition 374 departed from Lyttelton, New Zealand, in January 2018 and returned in March 2018. We recovered 1292.70 m of high-quality core from five sites spanning the early Miocene to late Quaternary. Three sites were cored on the continental shelf (Sites U1521, U1522, and U1523). At Site U1521, we cored a 650 m thick sequence of interbedded diamictite and diatom-rich mudstone penetrating seismic Ross Sea Unconformity 4 (RSU4). The depositional reconstructions of past glacial and open-marine conditions at this site will provide unprecedented insight into environmental change on the Antarctic continental shelf during the late early and middle Miocene. At Site U1522, we cored a discontinuous late Miocene to Pleistocene sequence of glacial and glaciomarine strata from the outer shelf with the primary objective of penetrating and dating RSU3, which is interpreted to reflect the first continental shelf–wide expansion of East and West Antarctic ice streams. Site U1523, located on the outer continental shelf, targeted a sediment drift beneath the westward-flowing Antarctic Slope Current (ASC) to test the hypothesis that changes in ASC vigor regulate ocean heat flux onto the continental shelf and thus ice sheet mass balance. We also cored two sites on the continental rise and slope. At Site U1524, we recovered a Plio–Pleistocene sedimentary sequence from the levee of the Hillary Canyon, one of the largest conduits of Antarctic Bottom Water from the continental shelf to the abyssal ocean. Site U1524 was designed to penetrate into middle Miocene and older strata, but coring was initially interrupted by drifting sea ice that forced us to abandon coring in Hole U1524A at 399.5 m drilling depth below seafloor (DSF). We moved to a nearby alternate site on the continental slope (Site U1525) to core a single hole designed to complement the record at Site U1524. We returned to Site U1524 after the sea ice cleared and cored Hole U1524C with the rotary core barrel system with the intention of reaching the target depth of 1000 m DSF. However, we were forced to terminate Hole U1524C at 441.9 m DSF because of a mechanical failure with the vessel that resulted in termination of all drilling operations and forced us to return to Lyttelton 16 days earlier than scheduled. The loss of 39% of our operational days significantly impacted our ability to achieve all Expedition 374 objectives. In particular, we were not able to recover continuous middle Miocene sequences from the continental rise designed to complement the discontinuous record from continental shelf Site U1521. The mechanical failure also meant we could not recover cores from proposed Site RSCR-19A, which was targeted to obtain a high-fidelity, continuous record of upper Neogene and Quaternary pelagic/hemipelagic sedimentation. Despite our failure to recover a continental shelf-to-rise Miocene transect, records from Sites U1522, U1524, and U1525 and legacy cores from the Antarctic Geological Drilling Project (ANDRILL) can be integrated to develop a shelf-to-rise Plio–Pleistocene transect. 
    more » « less
  5. Abstract

    Climate change is accelerating sea‐level rise and saltwater intrusion in coastal regions world‐wide and interacting with large‐scale changes in species composition in coastal wetlands. Quantifying macrophyte litter breakdown along freshwater‐to‐marine coastal gradients is needed to predict how carbon stores will respond to shifts in both macrophyte communities and water chemistry under changing environmental conditions.

    To test the interactive drivers of changing species identity and water chemistry, we performed a reciprocal transplant of four macrophyte litter species in seven sites along freshwater‐to‐marine gradients in the Florida Coastal Everglades. We measured surface water chemistry (dissolved organic carbon, total nitrogen and total phosphorus), litter chemistry (% nitrogen, % phosphorus, change in N:P molar ratio, % cellulose and % lignin as proxies for recalcitrance) and litter breakdown rates (k/degree‐day).

    Direct effects of salinity and surface water nutrients were the strongest drivers ofk, but unexpectedly, litter chemistry did not correlate with litterk. However, salinity strongly correlated with changes in litter chemistry, whereby litter incubated in brackish and marine wetlands was more labile and gained more phosphorus compared with litter in freshwater marshes. Our results suggest that litterkin coastal wetlands is explained by species‐specific interactions among water and litter chemistries. Water nutrient availability was an important predictor of breakdown rates across species, but breakdown rates were only explained by the carbon recalcitrance of litter in the species with the slowest breakdown (Cladium jamaicense), indicating the importance of carbon structure, and species identity on breakdown rates.

    Synthesis. In oligotrophic ecosystems, nutrients are often the primary driver of organic matter breakdown. However, we found that variation in macrophyte breakdown rates in oligotrophic coastal wetlands was also explained by salinity and associated seawater chemistry, emphasising the need to understand how saltwater intrusion will alter organic matter processing in wetlands. Our results suggest that marine subsidies associated with sea‐level rise have the potential to accelerate leaf litter breakdown. The increase in breakdown rates could either be buffered or increase further as sea‐level rise also shifts macrophyte community composition to more or less recalcitrant species.

     
    more » « less