skip to main content


Title: Atmospheric 14 C/ 12 C changes during the last glacial period from Hulu Cave

Paired measurements of14C/12C and230Th ages from two Hulu Cave stalagmites complete a precise record of atmospheric14C covering the full range of the14C dating method (~54,000 years). Over the last glacial period, atmospheric14C/12C ranges from values similar to modern values to values 1.70 times higher (42,000 to 39,000 years ago). The latter correspond to14C ages 5200 years less than calibrated ages and correlate with the Laschamp geomagnetic excursion followed by Heinrich Stadial 4. Millennial-scale variations are largely attributable to Earth’s magnetic field changes and in part to climate-related changes in the oceanic carbon cycle. A progressive shift to lower14C/12C values between 25,000 and 11,000 years ago is likely related, in part, to progressively increasing ocean ventilation rates.

 
more » « less
Award ID(s):
1642268 1339505 1702816
NSF-PAR ID:
10081450
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
362
Issue:
6420
ISSN:
0036-8075
Page Range / eLocation ID:
p. 1293-1297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objectives

    Bomb pulse (BP) radiocarbon (14C) dating methods are used by forensic anthropologists to estimate the year‐of‐death (YOD) of unidentified individuals. Method resolution and accuracy depend on establishing lag times, or the difference between a tissue's BP14C‐derived year and the YOD, of various tissue types from known deceased persons. Bone lag times span many years and are thought to increase with age as a function of slowing remodeling rates. However, remodeling rates for various skeletal elements, bone structures and phases are not well known.

    Materials and Methods

    Here a simple method is used to estimate bone remodeling rates from a compilation of published cortical femur bone collagen BP14C measurements (n = 102). Linear regression models and nonparametric tests are used to detect changes in lag times and remodeling rates with increasing age‐at‐death.

    Results

    Remodeling rates and lag times of 3.5%/year and 29 years, respectively, are estimated from individuals aged 40–97 years. In contrast to previous work, the analysis yielded modest and negligible changes in remodeling rates and lag times with advancing age. Moreover, statistically significant differences in remodeling rates and lag times were not found between reported females and males.

    Discussion

    Implications for the temporal contexts within an individual's lifetime of biogeochemical data in archaeology and forensic anthropology are discussed, warranting additional BP14C studies of known individuals and integration with histomorphometric analysis.

     
    more » « less
  2. Societal Impact Statement

    Today, expansive C4grassy biomes exist across central, western, and northern Madagascar. Some researchers have argued that the island's now‐extinct pygmy hippopotamuses belonged to a megaherbivore grazing guild that maintained these grasslands prior to human arrival. However, the chemistry of hippo bones indicates that C4grasses were only a minor part of hippo diet. This, in turn, suggests that C4grasses were present but not widespread when hippos were alive and that grasses expanded only after Malagasy people shifted from hunting and foraging to agropastoralism approximately 1000 years ago. These results have important implications for environmental reconstructions and biodiversity management.

    Summary

    Extinct hippopotamuses (Hippopotamusspp.) were part of Madagascar's megaherbivore guild. Stable carbon (δ13C) and nitrogen (δ15N) isotopes in radiometrically dated bone collagen track spatial and temporal variation in diet and habitat. If hippos helped maintain C4grassy biomes, then they should have regularly consumed C4grasses, which have high δ13C values. However, if expansive C4grassy biomes are anthropogenic, then forests would have been more extensive in the past, and hippos would have predominantly consumed C3plants with low δ13C values. Nitrogen isotopes can clarify foraging habitat (moist or dry).

    We assessed δ13C and δ15N values for hippos from different ecoregions of Madagascar and compared these with data for extinct herbivorous lemurs from the same ecoregions. We further explored the effects of wet/dry transitions on isotopic trends for hippos from the central highlands and spiny thicket ecoregions.

    Carbon isotopes suggest (1) limited C4consumption by hippos in the central highlands, dry deciduous forest, and succulent woodland ecoregions; and (2) moderate consumption of C4resources in the spiny thicket. Nitrogen data indicate that hippos foraged in wetter habitats than sympatric lemurs in all regions.

    Malagasy hippos did not regularly graze C4grasses in dry, open habitats, even in regions blanketed by C4grassy biomes today. Malagasy grasses are adapted to grazing and fire, but these are likely ancient adaptations that accompanied grasses when they initially spread to Madagascar. C4grassy biomes were spatially limited in extent in the past and only expanded after the Late Holocene introduction of domesticated ungulates.

     
    more » « less
  3. Harmata, Michael (Ed.)
    Several years ago, a small family of diterpenoid natural products attracted our attention as novel targets for synthesis studies. Initially, four compounds were independently characterized by the research teams of Vidari1 and Steglich.2 Trichoaurantianolides AeD (1e4 of Fig. 9.1) were isolated from fruiting bodies of the mushrooms Tricholoma aurantium and Tricholoma fracticum in 1995. Subsequent efforts of Stermer and coworkers3 described the isolation of the closely related lepistal (5) and lepistol (6) of Fig. 9.2 as the corresponding C8 deoxygenated compounds of this family. In addition, the corresponding acetate of trichoaurantianolide B was discovered and named as 6-O-aetyl- trichoaurantin (7).2 Structure assignments were based upon extensive nuclear magnetic resonance (NMR) studies, and the features of relative stereo- chemistry were confirmed by an X-ray crystallographic analysis of trichoaurantianolide B (2).1b,2 These original investigators described the trichoaurantianolides as examples of a new class of diterpenes named as neodolastanes that signified a structural relationship to the tricyclic metabo- lites of marine origins known as dolastanes as represented by dolatriol (8)4 and the clavularane 95 of Fig. 9.2. Neodolastanes were defined as substances in which the bridgehead methyl substituent appears in a vicinal relationship with respect to the isopropyl group as exemplified in 4,5-deoxyneodolabelline (10) of Fig. 9.2, a related class of marine natural products.6 Steglich and coworkers2 also indicated an assignment of absolute stereo- chemistry for 2 that was based on Hamilton’s applications of linear-hypothesis testing of crystallographic data. This seldom-used technique was in agreement with the proposed absolute configuration of 2 that was advanced by Vidari, based on an assessment of the observed Cotton effects in CD spectroscopy. In 2003, Ohta and coworkers7 reported the discovery of related neodolastanes tricholomalides A, B, and C (structures 11, 12, and 13 of Fig. 9.3) from Tricholoma sp. They concluded that the tricholomalides possessed the opposite absolute configuration claimed for the trichoaurantianolides. This conclusion was based upon the independent analysis of their circular dichroism studies. By application of the octant rule for substituent effects on cisoid a,b- unsaturated ketones,8 Ohta and coworkers suggested a revision of the prior assignment of absolute configuration for the trichoaurantianolides. This asser- tion was advanced in spite of the consistently positive specific rotations recorded in different solvents for trichoaurantianolides A, B, and C1,2 versus the negative values of tricholomalides A (11) and B (12) (compare values in Figs. 9.1 and 9.3). Note that tricholomalide C (13) only differs from trichoaurantianolide B (2) as a C-8 diastereomeric alcohol, presented in the antipodal series. The specific rotation of 13 was of little value since it was recorded as [a]0 (c 0.01, MeOH).7 In 2006, Danishefsky described a pathway for the total synthesis of racemic tricholomalides A and B, and this effort led to a revision of the relative C-2 stereochemistry (Fig. 9.3; revised structures 14 and 15).9 It seemed rather unusual that genetically similar fungi would produce closely related metabolites as enantiomers, but certainly this is not unprecedented. As a starting point, this issue lacked clarity, and we concluded that our synthesis plans must unambig- uously address the issues of absolute configuration. The chemistry of dolabellane and dolastane diterpenes has been reviewed.10 The proposed pathway for biosynthesis of the trichoaurantianolides and related compounds (Fig. 9.4) follows an established sequence from geranyl- geranyl pyrophosphate (16), which undergoes p-cation cyclization to initially form the eleven-membered ring of 17. The event is followed by a second cyclization to form the dolabellane cation 18, and this [9.3.0]cyclotetradecane skeleton is central to several families of natural products. Direct capture or elimination from 18 leads to the 3,7-dolabelladiene 19, which presents the most common pattern of unsaturation within this class. Compounds within this group are traditionally numbered beginning with C-1 as the bridgehead carbon bearing the methyl group rather than following the connectivity presented in ger- anylgeranyl 16. The cation 18 also undergoes a 1,2-hydrogen migration and elimination, which leads to a transannular cyclization yielding the 5e7e6 tri- cyclic dolastane 20. The secodolastanes, represented by 21, are a small collec- tion of marine natural products, which arise from oxidative cleavage of C10eC14 in the parent tricycle 20. In analogous fashion, the neodolabellane structure 22 is produced from 18 by stereospecific backbone migrations that result in the vicinal placement of the bridgehead methyl and isopropyl substituents. Transannular cyclizations, stemming from 22, yield the class of neodolastane diterpenes (23). Trichoaurantianolides and the related lepistal A (5) are the result of oxidations and cleavage of the C-ring (C4eC5) of 23, which leads to the features of an unusual butyrolactone system. The guanacastepenes, such as 24,11 and heptemerones, such as 25,12 are primary examples of the 5e7e6 neodolastane family, and these metabolites have also been isolated from fungi sources. A characteristic structural feature is the vicinal, syn-relationship of the bridgehead methyl and isopropyl sub- stituents as compared with the 1,3-trans relationship found in dolastanes (Fig. 9.2, structures 8 and 9). Guanacastepenes have proven to be attractive targets for synthesis studies.11,13 However, these fungal metabolites exhibit the antipodal, absolute stereochemistry as compared with neodolastanes from marine origins, such as sphaerostanol (26) (Fig. 9.5).14 
    more » « less
  4. Abstract. During the last glacial period Northern Hemisphere climate was characterizedby extreme and abrupt climate changes, so-called Dansgaard–Oeschger (DO)events. Most clearly observed as temperature changes in Greenland ice-corerecords, their climatic imprint was geographically widespread. However, thetemporal relation between DO events in Greenland and other regions isuncertain due to the chronological uncertainties of each archive, limitingour ability to test hypotheses of synchronous change. In contrast, theassumption of direct synchrony of climate changes forms the basis of manytimescales. Here, we use cosmogenic radionuclides (10Be,36Cl, 14C) to link Greenland ice-core records toU∕Th-dated speleothems, quantify offsets between the two timescales, andimprove their absolute dating back to 45000 years ago. This approach allowsus to test the assumption that DO events occurred synchronously betweenGreenland ice-core and tropical speleothem records with unprecedentedprecision. We find that the onset of DO events occurs within synchronizationuncertainties in all investigated records. Importantly, we demonstrate thatlocal discrepancies remain in the temporal development of rapid climatechange for specific events and speleothems. These may either be related tothe location of proxy records relative to the shifting atmospheric fronts orto underestimated U∕Th dating uncertainties. Our study thus highlightsthe potential for misleading interpretations of the Earth system whenapplying the common practice of climate wiggle matching.

     
    more » « less
  5. Rationale

    The isotopic measurement of environmental sample CO2via isotope ratio mass spectrometry (IRMS) can present many analytical challenges. In many offline applications, exceedingly few samples can be prepared per day. In such applications, long‐term storage (months) of sample CO2is desirable, in order to accumulate enough samples to warrant a day of isotopic measurements. Conversely, traditional sample tube cracker systems for dual‐inlet IRMS offer a capacity for only 6–8 tubes and thus limit throughput. Here we present a simple method to alleviate these concerns using a Gas Bench II gas handling device coupled with continuous‐flow IRMS.

    Methods

    Sample preparation entails the cryogenic purification and quantification of CO2on a vacuum line. Sample CO2splits are expanded from a known volume to several sample ports and allowed to isotopically equilibrate (homogenize). Equilibrated CO2splits are frozen into 3 mm outer diameter Pyrex break‐seals and sealed under vacuum with a torch to a length of 5.5 cm. Sample break‐seals are scored, placed into 12 mL Labco Exetainer®vials, purged with ultrahigh‐purity helium, cracked inside the capped helium‐flushed vials and subsequently measured via a Gas Bench equipped IRMS instrument using a CTC Analytics PAL autosampler.

    Results

    Our δ13C results from NIST and internal isotopic standards, measured over a time period of several years, indicate that the sealed‐tube method produces accurate δ13C values to a precision of ±0.1‰ for samples containing 10–35 μgC. The tube cracking technique within Exetainer vials has been optimized over a period of 10 years, resulting in decreased sample failure rates from 5–10% to <1%.

    Conclusions

    This technique offers an alternative method for δ13C analyses of CO2where offline isolation and long‐term storage are desired. The method features a much higher sample throughput than traditional dual‐inlet IRMS cracker setups at similar precision (±0.1‰).

     
    more » « less