skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atmospheric 14 C/ 12 C changes during the last glacial period from Hulu Cave
Paired measurements of14C/12C and230Th ages from two Hulu Cave stalagmites complete a precise record of atmospheric14C covering the full range of the14C dating method (~54,000 years). Over the last glacial period, atmospheric14C/12C ranges from values similar to modern values to values 1.70 times higher (42,000 to 39,000 years ago). The latter correspond to14C ages 5200 years less than calibrated ages and correlate with the Laschamp geomagnetic excursion followed by Heinrich Stadial 4. Millennial-scale variations are largely attributable to Earth’s magnetic field changes and in part to climate-related changes in the oceanic carbon cycle. A progressive shift to lower14C/12C values between 25,000 and 11,000 years ago is likely related, in part, to progressively increasing ocean ventilation rates.  more » « less
Award ID(s):
1642268 1339505 1702816
PAR ID:
10081450
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
362
Issue:
6420
ISSN:
0036-8075
Page Range / eLocation ID:
p. 1293-1297
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Northern Arizona University, Flagstaff, Arizona, USA, recently installed a MIni CArbon DAting System (MICADAS) with a gas interface system (GIS) for determining the14C content of CO2gas released by the acid dissolution of biogenic carbonates. We compare 48 paired graphite, GIS, and direct carbonate14C determinations of individual mollusk shells and echinoid tests. GIS sample sizes ranged between 0.5 and 1.5 mg and span 0.1 to 45.1 ka BP (n = 42). A reduced major axis regression shows a strong relationship between GIS and graphite percent Modern Carbon (pMC) values (m = 1.011; 95% CI [0.997–1.023], R2= 0.999) that is superior to the relationship between the direct carbonate and graphite values (m = 0.978; 95% CI [0.959-0.999], R2= 0.997). Sixty percent of GIS pMC values are within ±0.5 pMC of their graphite counterparts, compared to 26% of direct carbonate pMC values. The precision of GIS analyses is approximately ±7014C yrs to 6.5 ka BP and decreases to approximately ±13014C yrs at 12.5 ka BP. This precision is on par with direct carbonate and is approximately five times larger than for graphite. Six Plio-Pleistocene mollusk and echinoid samples yield finite ages when analyzed as direct carbonate but yield non-finite ages when analyzed as graphite or as GIS. Our results show that GIS14C dating of biogenic carbonates is preferable to direct carbonate14C dating and is an efficient alternative to standard graphite14C dating when the precision of graphite14C dating is not required. 
    more » « less
  2. Abstract Cosmic rays and solar energetic particles pose significant risks to satellites, space stations, and human space exploration. They also produce atmospheric radiocarbon (14C), which enters the carbon cycle and is recorded by paleoenvironmental proxies. Miyake events, rapid increases in atmospheric14C, first identified in annual tree rings and later confirmed through ice core10Be and36Cl isotopes, are thought to result from extreme solar activity, are seven events identified over the last 14,300 years. However, uncertainty in annual14C measurements limits precise inferences about their timing and magnitude. This study examines uncertainties in14C during two Miyake events (774 CE and 993 CE) across trees with differing uptake, storage, and allocation of carbon. We hypothesize that tree species physiology affects tree‐ring Δ14C, with deciduous species recording lagged, attenuated tree‐ring Δ14C relative to evergreen species. Using Δ14C data from pine and larch in Mongolia and a larger multi‐species Northern Hemisphere data set, we employed a Bayesian framework to estimate the timing, duration, and magnitude of these two events. Our AMS results showed no differences in Δ14C between evergreen and deciduous species growing at similar sites during the 774 CE event. The 993 CE event was variable, but parameter estimates were consistent between species. Northern Hemisphere comparisons indicated that annual series of Δ14C from evergreen and deciduous conifers yielded relatively more precise modeled estimates of start date and duration relative to deciduous broadleaf species. Future studies should consider the role of species‐specific carbon allocation strategies and storage dynamics in determining the radiocarbon response to Miyake events. 
    more » « less
  3. Abstract ObjectivesBomb pulse (BP) radiocarbon (14C) dating methods are used by forensic anthropologists to estimate the year‐of‐death (YOD) of unidentified individuals. Method resolution and accuracy depend on establishing lag times, or the difference between a tissue's BP14C‐derived year and the YOD, of various tissue types from known deceased persons. Bone lag times span many years and are thought to increase with age as a function of slowing remodeling rates. However, remodeling rates for various skeletal elements, bone structures and phases are not well known. Materials and MethodsHere a simple method is used to estimate bone remodeling rates from a compilation of published cortical femur bone collagen BP14C measurements (n = 102). Linear regression models and nonparametric tests are used to detect changes in lag times and remodeling rates with increasing age‐at‐death. ResultsRemodeling rates and lag times of 3.5%/year and 29 years, respectively, are estimated from individuals aged 40–97 years. In contrast to previous work, the analysis yielded modest and negligible changes in remodeling rates and lag times with advancing age. Moreover, statistically significant differences in remodeling rates and lag times were not found between reported females and males. DiscussionImplications for the temporal contexts within an individual's lifetime of biogeochemical data in archaeology and forensic anthropology are discussed, warranting additional BP14C studies of known individuals and integration with histomorphometric analysis. 
    more » « less
  4. Radiocarbon (14C) is a critical tool for understanding the global carbon cycle. During the Anthropocene, two new processes influenced14C in atmospheric, land and ocean carbon reservoirs. First,14C-free carbon derived from fossil fuel burning has diluted14C, at rates that have accelerated with time. Second, ‘bomb’14C produced by atmospheric nuclear weapon tests in the mid-twentieth century provided a global isotope tracer that is used to constrain rates of air–sea gas exchange, carbon turnover, large-scale atmospheric and ocean transport, and other key C cycle processes. As we write, the14C/12C ratio of atmospheric CO2is dropping below pre-industrial levels, and the rate of decline in the future will depend on global fossil fuel use and net exchange of bomb14C between the atmosphere, ocean and land. This milestone coincides with a rapid increase in14C measurement capacity worldwide. Leveraging future14C measurements to understand processes and test models requires coordinated international effort—a ‘decade of radiocarbon’ with multiple goals: (i) filling observational gaps using archives, (ii) building and sustaining observation networks to increase measurement density across carbon reservoirs, (iii) developing databases, synthesis and modelling tools and (iv) establishing metrics for identifying and verifying changes in carbon sources and sinks. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'. 
    more » « less
  5. Abstract A limitation in fine-tuned tree-ring radiocarbon (14C) data is normally associated with overall data uncertainty. Tree-ring14C data variance as a result of sample heterogeneity can be reduced by adopting best practices at the time of sample collection and subsequent preparation and analysis. Variance-reduction of14C data was achieved by meticulous sample handling during increment core or cross-sectional cuttings, in-laboratory wood reductions, and cellulose fiber homogenization of whole rings. To demonstrate the performance of those procedures to final14C results, we took advantage of the replicated data from assigned calendar years of two Pantropical post-1950 AD tree-ring14C reconstructions. TwoCedrela fissilisVell. trees spaced 22.5 km apart, and two trees of this species together with onePeltogyne paniculataBenth tree spaced 0.2 to 5 km apart were sampled in a tropical dry and moist forest, respectively. Replicate14C data were then obtained from grouped tree-ring samples from each site. A total of 88% of the replicated14C results fell into a remarkably consistent precision/accuracy range of 0.3% or less, even though multiple tree species were used as pairs/sets. This finding illustrates how adopting a few simple strategies, in tandem with already established chemical extraction procedures and high-precision14C analysis, can improve14C data results of tropical trees. 
    more » « less