skip to main content


Title: Unprecedented performance of N-doped activated hydrothermal carbon towards C 2 H 6 /CH 4 , CO 2 /CH 4 , and CO 2 /H 2 separation
A series of N-doped porous carbons with different textural properties and N contents was prepared from a mixture of algae and glucose and their capability for the separation of CO 2 /CH 4 , C 2 H 6 /CH 4 , and CO 2 /H 2 binary mixtures under different conditions (bulk pressure, mixture composition, and temperature) were subsequently assessed in great detail. It was observed that the gas (C 2 H 6 , CO 2 , CH 4 , and H 2 ) adsorption capacity at different pressure regions was primarily governed by different adsorbent parameters (N level, narrow micropore volume, and BET specific surface area). More interestingly, it was found that N-doping can selectively enhance the heats of adsorption of C 2 H 6 and CO 2 , while it had a negligible effect on those of CH 4 and H 2 . The adsorption equilibrium selectivities for separating C 2 H 6 /CH 4 , CO 2 /CH 4 , and CO 2 /H 2 gas mixture pairs on the porous carbons were predicted using the ideal adsorbed solution theory (IAST) based on pure-component adsorption isotherms. In particular, sample NAHA-1 exhibited by far the best performance (in terms of gas adsorption capacity and selectivity) reported for porous carbons for the separation of these three binary mixtures. More significantly, NAHA-1 carbon outperforms many of its counterparts ( e.g. MOFs and zeolites), emphasizing the important role of carbonaceous adsorbents in gas purification and separation.  more » « less
Award ID(s):
1301346
NSF-PAR ID:
10081705
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
4
Issue:
6
ISSN:
2050-7488
Page Range / eLocation ID:
2263 to 2276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although many porous materials, including metal–organic frameworks (MOFs), have been reported to selectively adsorb C2H2in C2H2/CO2separation processes, CO2‐selective sorbents are much less common. Here, we report the remarkable performance ofMFU‐4(Zn5Cl4(bbta)3, bbta=benzo‐1,2,4,5‐bistriazolate) toward inverse CO2/C2H2separation. The MOF facilitates kinetic separation of CO2from C2H2, enabling the generation of high purity C2H2(>98 %) with good productivity in dynamic breakthrough experiments. Adsorption kinetics measurements and computational studies show C2H2is excluded fromMFU‐4by narrow pore windows formed by Zn−Cl groups. Postsynthetic F/Clligand exchange was used to synthesize an analogue (MFU‐4‐F) with expanded pore apertures, resulting in equilibrium C2H2/CO2separation with reversed selectivity compared toMFU‐4.MFU‐4‐Falso exhibits a remarkably high C2H2adsorption capacity (6.7 mmol g−1), allowing fuel grade C2H2(98 % purity) to be harvested from C2H2/CO2mixtures by room temperature desorption.

     
    more » « less
  2. Abstract

    Although many porous materials, including metal–organic frameworks (MOFs), have been reported to selectively adsorb C2H2in C2H2/CO2separation processes, CO2‐selective sorbents are much less common. Here, we report the remarkable performance ofMFU‐4(Zn5Cl4(bbta)3, bbta=benzo‐1,2,4,5‐bistriazolate) toward inverse CO2/C2H2separation. The MOF facilitates kinetic separation of CO2from C2H2, enabling the generation of high purity C2H2(>98 %) with good productivity in dynamic breakthrough experiments. Adsorption kinetics measurements and computational studies show C2H2is excluded fromMFU‐4by narrow pore windows formed by Zn−Cl groups. Postsynthetic F/Clligand exchange was used to synthesize an analogue (MFU‐4‐F) with expanded pore apertures, resulting in equilibrium C2H2/CO2separation with reversed selectivity compared toMFU‐4.MFU‐4‐Falso exhibits a remarkably high C2H2adsorption capacity (6.7 mmol g−1), allowing fuel grade C2H2(98 % purity) to be harvested from C2H2/CO2mixtures by room temperature desorption.

     
    more » « less
  3. Abstract

    The Raman spectral behavior of N2, CO2, and CH4in ternary N2–CO2–CH4mixtures was studied from 22°C to 200°C and 10 to 500 bars. The peak position of N2in all mixtures is located at lower wavenumbers compared with pure N2at the same pressure (P)–temperature (T) (PT) conditions. The Fermi diad splitting in CO2is greater in the pure system than in the mixtures, and the Fermi diad splitting increases in the mixtures as CO2concentration increases at constantPandT. The peak position of CH4in the mixtures is shifted to higher wavenumbers compared with pure CH4at the samePTconditions. However, the relationship between peak position and CH4mole fraction is more complicated compared with the trends observed with N2and CO2. The relative order of the peak position isotherms of CH4and N2in the mixtures in pressure–peak position space mimics trends in the molar volume of the mixtures in pressure–molar volume space. Relationships between the direction of peak shift of individual components in the mixtures, the relative molar volumes of the mixtures, and the attraction and repulsion forces between molecules are developed. Additionally, the relationship between the peak position of N2in ternary N2–CO2–CH4mixtures with pressure is extended to other N2‐bearing systems to assess similarities in the Raman spectral behavior of N2in various systems.

     
    more » « less
  4. Abstract

    The high energy footprint of commodity gas purification and increasing demand for gases require new approaches to gas separation. Kinetic separation of gas mixtures through molecular sieving can enable separation by molecular size or shape exclusion. Physisorbents must exhibit the right pore diameter to enable separation, but the 0.3–0.4 nm range relevant to small gas molecules is hard to control. Herein, dehydration of the ultramicroporous metal–organic framework Ca‐trimesate, Ca(HBTC)⋅H2O (H3BTC=trimesic acid), bnn‐1‐Ca‐H2O, affords a narrow pore variant, Ca(HBTC), bnn‐1‐Ca. Whereas bnn‐1‐Ca‐H2O (pore diameter 0.34 nm) exhibits ultra‐high CO2/N2, CO2/CH4, and C2H2/C2H4binary selectivity, bnn‐1‐Ca (pore diameter 0.31 nm) offers ideal selectivity for H2/CO2and H2/N2under cryogenic conditions. Ca‐trimesate, the first physisorbent to exhibit H2sieving under cryogenic conditions, could be a prototype for a general approach to exert precise control over pore diameter in physisorbents.

     
    more » « less
  5. Abstract

    The high energy footprint of commodity gas purification and increasing demand for gases require new approaches to gas separation. Kinetic separation of gas mixtures through molecular sieving can enable separation by molecular size or shape exclusion. Physisorbents must exhibit the right pore diameter to enable separation, but the 0.3–0.4 nm range relevant to small gas molecules is hard to control. Herein, dehydration of the ultramicroporous metal–organic framework Ca‐trimesate, Ca(HBTC)⋅H2O (H3BTC=trimesic acid), bnn‐1‐Ca‐H2O, affords a narrow pore variant, Ca(HBTC), bnn‐1‐Ca. Whereas bnn‐1‐Ca‐H2O (pore diameter 0.34 nm) exhibits ultra‐high CO2/N2, CO2/CH4, and C2H2/C2H4binary selectivity, bnn‐1‐Ca (pore diameter 0.31 nm) offers ideal selectivity for H2/CO2and H2/N2under cryogenic conditions. Ca‐trimesate, the first physisorbent to exhibit H2sieving under cryogenic conditions, could be a prototype for a general approach to exert precise control over pore diameter in physisorbents.

     
    more » « less