skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geolocating Images with Crowdsourcing and Diagramming
Many types of investigative work involve verifying the legitimacy of visual evidence by identifying the precise geographic location where a photo or video was taken. Professional geolocation is often a manual, time-consuming process that can involve searching large areas of satellite imagery for potential matches. In this paper, we explore how crowdsourcing can be used to support expert image geolocation. We adapt an expert diagramming technique to overcome spatial reasoning limitations of novice crowds so that they can support an expert's search. In an experiment (n=540), we found that diagrams work significantly better than ground-level photos and allow crowds to reduce a search area by half before any expert intervention. We also discuss hybrid approaches to complex image analysis combining crowds, experts, and computer vision.  more » « less
Award ID(s):
1651969 1527453
PAR ID:
10081891
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI 2018)
Page Range / eLocation ID:
5299 to 5303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Geolocation, the process of identifying the precise location in the world where a photo or video was taken, is central to many types of investigative work, from debunking fake news posted on social media to locating terrorist training camps. Professional geolocation is often a manual, time-consuming process that involves searching large areas of satellite imagery for potential matches. In this paper, we explore how crowdsourcing can be used to support expert image geolocation. We adapt an expert diagramming technique to overcome spatial reasoning limitations of novice crowds, allowing them to support an expert’s search. In two experiments (n=1080), we found that diagrams work significantly better than ground-level photos and allow crowds to reduce a search area by half before any expert intervention. We also discuss hybrid approaches to complex image analysis combining crowds, experts, and computer vision. 
    more » « less
  2. This paper explores the application of sensemaking theory to support non-expert crowds in intricate data annotation tasks. We investigate the influence of procedural context and data context on the annotation quality of novice crowds, defining procedural context as completing multiple related annotation tasks on the same data point, and data context as annotating multiple data points with semantic relevance. We conducted a controlled experiment involving 140 non-expert crowd workers, who generated 1400 event annotations across various procedural and data context levels. Assessments of annotations demonstrate that high procedural context positively impacts annotation quality, although this effect diminishes with lower data context. Notably, assigning multiple related tasks to novice annotators yields comparable quality to expert annotations, without costing additional time or effort. We discuss the trade-offs associated with procedural and data contexts and draw design implications for engaging non-experts in crowdsourcing complex annotation tasks. 
    more » « less
  3. Relevance to proposal: This project evaluates the generalizability of real and synthetic training datasets which can be used to train model-free techniques for multi-agent applications. We evaluate different methods of generating training corpora and machine learning techniques including Behavior Cloning and Generative Adversarial Imitation Learning. Our results indicate that the utility-guided selection of representative scenarios to generate synthetic data can have significant improvements on model performance. Paper abstract: Crowd simulation, the study of the movement of multiple agents in complex environments, presents a unique application domain for machine learning. One challenge in crowd simulation is to imitate the movement of expert agents in highly dense crowds. An imitation model could substitute an expert agent if the model behaves as good as the expert. This will bring many exciting applications. However, we believe no prior studies have considered the critical question of how training data and training methods affect imitators when these models are applied to novel scenarios. In this work, a general imitation model is represented by applying either the Behavior Cloning (BC) training method or a more sophisticated Generative Adversarial Imitation Learning (GAIL) method, on three typical types of data domains: standard benchmarks for evaluating crowd models, random sampling of state-action pairs, and egocentric scenarios that capture local interactions. Simulated results suggest that (i) simpler training methods are overall better than more complex training methods, (ii) training samples with diverse agent-agent and agent-obstacle interactions are beneficial for reducing collisions when the trained models are applied to new scenarios. We additionally evaluated our models in their ability to imitate real world crowd trajectories observed from surveillance videos. Our findings indicate that models trained on representative scenarios generalize to new, unseen situations observed in real human crowds. 
    more » « less
  4. null (Ed.)
    Due to the importance of object detection in video analysis and image annotation, it is widely utilized in a number of computer vision tasks such as face recognition, autonomous vehicles, activity recognition, tracking objects and identity verification. Object detection does not only involve classification and identification of objects within images, but also involves localizing and tracing the objects by creating bounding boxes around the objects and labelling them with their respective prediction scores. Here, we leverage and discuss how connected vision systems can be used to embed cameras, image processing, Edge Artificial Intelligence (AI), and data connectivity capabilities for flood label detection. We favored the engineering definition of label detection that a label is a sequence of discrete measurable observations obtained using a capturing device such as web cameras, smart phone, etc. We built a Big Data service of around 1000 images (image annotation service) including the image geolocation information from various flooding events in the Carolinas (USA) with a total of eight different object categories. Our developed platform has several smart AI tools and task configurations that can detect objects’ edges or contours which can be manually adjusted with a threshold setting so as to best segment the image. The tool has the ability to train the dataset and predict the labels for large scale datasets which can be used as an object detector to drastically reduce the amount of time spent per object particularly for real-time image-based flood forecasting. This research is funded by the US National Science Foundation (NSF). 
    more » « less
  5. As AI-based face recognition technologies are increasingly adopted for high-stakes applications like locating suspected criminals, public concerns about the accuracy of these technologies have grown as well. These technologies often present a human expert with a shortlist of high-confidence candidate faces from which the expert must select correct match(es) while avoiding false positives, which we term the “last-mile problem.” We propose Second Opinion, a web-based software tool that employs a novel crowdsourcing workflow inspired by cognitive psychology, seed-gather-analyze, to assist experts in solving the last-mile problem. We evaluated Second Opinion with a mixed-methods lab study involving 10 experts and 300 crowd workers who collaborate to identify people in historical photos. We found that crowds can eliminate 75% of false positives from the highest-confidence candidates suggested by face recognition, and that experts were enthusiastic about using Second Opinion in their work. We also discuss broader implications for crowd–AI interaction and crowdsourced person identification. 
    more » « less