skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Music-Defined Networking
For several years researchers have used the term "network orchestration" as a metaphor. In this paper, we make the metaphor reality; we describe a novel approach to network orchestration that leverages sounds to augment or replace various network management operations. We test our Music-Defined Networking approach with both a real and a virtual network testbed, on several mechanisms and applications: from datacenter server fan failure detection to authentication, from load balancing to explicit congestion notification and detection of heavy hitter flows. Our approach can be used with and without a Software-Defined Network controller. Despite its limitations, we believe that sound-based network management has potential to be further explored as an effective and inexpensive out-of-band orchestration technique.  more » « less
Award ID(s):
1647084
PAR ID:
10082092
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 17th ACM Workshop on Hot Topics in Networks
Page Range / eLocation ID:
155 to 161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    The Large Hadron Collider (LHC) experiments distribute data by leveraging a diverse array of National Research and Education Networks (NRENs), where experiment data management systems treat networks as a “blackbox” resource. After the High Luminosity upgrade, the Compact Muon Solenoid (CMS) experiment alone will produce roughly 0.5 exabytes of data per year. NREN Networks are a critical part of the success of CMS and other LHC experiments. However, during data movement, NRENs are unaware of data priorities, importance, or need for quality of service, and this poses a challenge for operators to coordinate the movement of data and have predictable data flows across multi-domain networks. The overarching goal of SENSE (The Software-defined network for End-to-end Networked Science at Exascale) is to enable National Labs and universities to request and provision end-to-end intelligent network services for their application workflows leveraging SDN (Software-Defined Networking) capabilities. This work aims to allow LHC Experiments and Rucio, the data management software used by CMS Experiment, to allocate and prioritize certain data transfers over the wide area network. In this paper, we will present the current progress of the integration of SENSE, Multi-domain end-to-end SDN Orchestration with QoS (Quality of Service) capabilities, with Rucio, the data management software used by CMS Experiment. 
    more » « less
  2. Co-existing fixed-grid and flex-grid (i.e., mixed- grid) optical networks introduce new challenges for network orchestration. Such mixed-grid networks are often controlled by hierarchical distributed architecture comprising of Optical Network Controllers and Software-Defined Network Controllers. Optimal deployment of these controllers is very important for efficient management of mixed-grid optical networks. 
    more » « less
  3. Accurate metaphor detection remains an open challenge. In this paper, we explore a new type of clue for disambiguating terms that may be used metaphorically or literally in an online medical support community. In particular, we investigate the influence of situational factors on propensity to employ the metaphorical sense of words when they can be used to illustrate the emotion behind the experience of the event. Specifically we consider the experience of stressful illness-related events in a poster’s recent history as situational factors. We evaluate the positive impact of automatically extracted cancer events on a metaphor detection task using data from an online cancer forum. We also provide a discussion of specific associations between events and metaphors, such as journey with diagnosis or warrior with chemotherapy. 
    more » « less
  4. Intent-based networking (IBN) promises to simplify the network management and automated orchestration of high-level policies in future networking architectures such as software-defined networking (SDN). However, such abstraction and automation creates new network visibility challenges. Existing SDN network forensics and diagnostics tools operate at a lower level of network abstraction, which makes intent-level reasoning difficult. We present PROVINTENT, a framework extension for SDN control plane tools that accounts for intent semantics. PROVINTENT records the provenance and evolution of intents as the network’s state and apps’ requests change over time and enables reasoning at multiple abstractions. We define an intent provenance model, we implement a proof-of-concept tool, and we evaluate the efficacy of PROVINTENT’s explanatory capabilities by using a representative intent-driven network application. 
    more » « less
  5. Contextual information has been widely used in many computer vision tasks. However, existing approaches design specific contextual information mechanisms for different tasks. In this work, we propose a general context learning and reasoning framework for object detection tasks with three components: local contextual labeling, contextual graph generation and spatial contextual reasoning. With simple user defined parameters, local contextual labeling automatically enlarge the small object labels to include more local contextual information. A Graph Convolutional Network learns over the generated contextual graph to build a semantic space. A general spatial relation is used in spatial contextual reasoning to optimize the detection results. All three components can be easily added and removed from a standard object detector. In addition, our approach also automates the training process to find the optimal combinations of user defined parameters. The general framework can be easily adapted to different tasks. In this paper we compare our framework with a previous multistage context learning framework specifically designed for storefront accessibility detection and a state of the art detector for pedestrian detection. Experimental results on two urban scene datasets demonstrate that our proposed general framework can achieve same performance as the specifically designed multistage framework on storefront accessibility detection, and with improved performance on pedestrian detection over the state of art detector. 
    more » « less