skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics
Award ID(s):
1753916
PAR ID:
10082347
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Earth and Planetary Science Letters
Volume:
494
Issue:
C
ISSN:
0012-821X
Page Range / eLocation ID:
42 to 49
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Moon generated a long‐lived core dynamo magnetic field, with intensities at least episodically reaching ∼10–100 μT during the period prior to ∼3.56 Ga. While magnetic anomalies observed within impact basins are likely attributable to the presence of impactor‐added metal, other anomalies such as those associated with lunar swirls are not as conclusively linked to exogenic materials. This has led to the hypothesis that some anomalies may be related to magmatic features such as dikes, sills, and laccoliths. However, basalts returned from the Apollo missions are magnetized too weakly to produce the required magnetization intensities (>0.5 A/m). Here, we test the hypothesis that subsolidus reduction of ilmenite within or adjacent to slowly cooled mafic intrusive bodies could locally enhance metallic FeNi contents within the lunar crust. We find that reduction within hypabyssal dikes with high‐Ti or low‐Ti mare basalt compositions can produce sufficient FeNi grains to carry the minimum >0.5 A/m magnetization intensity inferred for swirls, especially if ambient fields are >10 μT or if fine‐grained Fe‐Ni metals in the pseudo‐single domain grain size range are formed. Therefore, there exists a possibility that certain magnetic anomalies exhibiting various shapes such as linear, swarms, and elliptical patterns may be magmatic in origin. Our study highlights that the domain state of the magnetic carriers is an under‐appreciated factor in controlling a rock's magnetization intensity. The results of this study will help guide interpretations of lunar crustal field data acquired by future rovers that will traverse lunar magnetic anomalies. 
    more » « less
  2. Much of Earth’s magma is stored as extensive crystal mush systems, yet the prevalence of physical processes operating within mushes and their importance in volcanically active regions remain enigmatic. In this Review, we explore the physical properties and key processes of crystal mush systems. The initiation, evolution and decline of volcanic systems, modulated by heat supply and loss, could generate differences in the prevalence of mush processes through space and time. Additionally, regional tectonics alter mush properties, with mushes in cool wet settings having persistent residual melt, permitting more effective melt segregation than in hot dry settings. Disaggregation of mushes results in crystal mush material being mobilized or entrained into lavas and erupted, presenting opportunities to define the timescales and chemistry of some mush processes in volcanically active regions. Mush systems can be observed on length scales ranging from kilometres (using geological mapping) to micrometres (using crystal textures). Therefore, it is difficult to integrate data and interpretations across different fields. Improved integration of thermodynamics, textural analysis, geochemistry, modelling and experiments, alongside inputs from adjacent fields such as porous media dynamics, engineering and metallurgy will help to advance understanding of mush systems and ultimately improve hazard evaluation at active and dormant volcanic systems. 
    more » « less
  3. Abstract The northwestern part of North America has recorded multiple tectonic events, such as terrane accretion, strike‐slip motion, and subduction of the Pacific and Yakutat plates, providing an iconic setting to investigate the tectonic evolution of the continental crust. In this study we analyze the receiver functions at seismic stations deployed during 1999–2022 to estimate the crustal thickness, as well as possible slab signature, in Alaska and northwestern Canada. The Moho signal can be clearly detected within the continental region. Specifically, in northwestern Canada, the thickest crust is observed beneath the Cordilleran Deformation Front, which marks the structural boundary between the North American Craton and the North American Margin. We observe a few distinct offsets in the Moho depth located both within the tectonic units and approximately across the major faults between the tectonic units. We provide a first‐order estimate of the depth gradient of the Moho offsets based on the horizontal distance of the two closest seismic stations across the offsets. We propose that the Moho offsets reflect the cumulative impact of the accretionary orogenies and post‐orogenic tectonic events on crustal modification. The continental Moho signal is weak or obscure in Aleutian and southcentral Alaska, and the oceanic Moho within the subducting plates is likely detected. This study provides new seismic insights into understanding the impacts of the tectonic events on continental formation and evolution. 
    more » « less
  4. Regional metamorphism and densification (eclogitization) of the lower crust can affect the lithospheric dynamics of mountain belts, but the coupled effects of reaction rate, temperature, and composition on metamorphism are poorly understood. We present a reactive thermodynamic model of the granulite–eclogite transition to investigate the long-term buoyancy and gravitational stability of the lower crust. First, we characterize the conditions for which orogenic crust attains negative buoyancy by determining its reactive mineral assemblage and density under prescribed pressure–temperature–time paths. Using existing metamorphic rate data, we calibrate a Damkoḧler number (a relative reaction rate) to parameterize the catalytic effect of aqueous fluids. The depth necessary for negative buoyancy is sensitive to temperature and Da, ranging from ∼45 to Image 1 for a basaltic-andesite composition (54 wt.% SiO2). Second, using a Rayleigh–Taylor instability analysis, we suggest that, while cold eclogitic crusts Image 2 could obtain large thicknesses of ∼10 to Image 3 and would founder within Image 4. We hypothesize that such foundering events are a natural consequence of convergent tectonics, where the aqueous fluids and high pressures required for metamorphism are known to exist. The Pampean flat slab in the Central Andes provides geophysical evidence linking slab fluids to eclogitization and densification of the thickened continental crust. Lithospheric foundering coupled to convergent tectonics through eclogitization could explain many observations of orogenic hinterland deformation and magmatism. 
    more » « less