skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design and implementation of a multi winding high frequency transformer for MPSST application
Development of the new generation of high power and high frequency power electronic switches along with the need for compact controllable converters for utilization of distributed energy resources in the grid, have led to significant developments in the area of solid state transformers in the last years. The design process of a high frequency transformer as the main element in the solid state transformer is illustrated in this article. A multi winding transformer for multiport SST application is designed, studied and built in this research. In a MPSST several windings feed the core. As the result, coupling coefficient between each pair of windings, become an important factor which is studied in this study. Since the transformer is designed for high frequency applications, the power loss in the wire and core of the transformer increases as the result of higher skin effect and eddy current loss in high frequency. Three important factors in the design of HF transformer for MPSST are discussed in the paper. First, four different possible core materials are compared based on their flux density, frequency range, loss and price. Then the cable selection is illustrated and finally, different winding placement and distribution on the same core are suggested and the inductance and coupling coefficient matrices are calculated using ANSYS Maxwell 3D simulation. The transformer is built in the lab and the inductance values matches the expected values from the simulation.  more » « less
Award ID(s):
1650470
PAR ID:
10082509
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)
Page Range / eLocation ID:
491 to 494
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Battery Energy Storage Systems (BESS) are critical to achieving reliability and efficiency in the modern electric grid. Dual Active Bridges (DAB) are often proposed for such integration since they can allow multiple sources and electrical isolation via a high-frequency transformer. In defined applications, DABs rely on the magnetizing and leakage inductance of their high-frequency transformers to achieve their performance requirement. In this paper, the inductance parameters of two types of two-winding transformers are investigated using the Finite Element Analysis (FEA) software ANSYS Maxwell. The variation of the inductance values due to the windings' distribution and core geometry was studied by establishing a parametric analysis. Prototypes were built and tested to compare the inductances actual measurements versus the simulation results. Exploring the possibility of characterizing the inductances of a transformer from a simulation standpoint is of interest in order to construct customized transformers with the optimal characteristic required in a specific DAB design. 
    more » « less
  2. null (Ed.)
    In this study, design of a 330kW single-phase transformer (corresponding to 1MW three-phase) operating at 50kHz is presented. Possible core materials and their performances are investigated under high switching frequency operation. Core volume, area, configuration, and market availability are studied to achieve the optimal compact and cost-effective transformer model. Next, transformer winding type, size, placement, and cost are analyzed. These steps will result in a complete transformer electromagnetic design and modelling. Afterwards, a 3D transformer model is created and simulated using a Finite Element Analysis (FEA) tool. ANSYS Maxwell-3D is used to simulate the magnetics, electrostatics, and transients of the designed transformer. This model is integrated with a power electronics circuit in ANSYS Simplorer to make a co-simulation for the entire system. Results obtained will include core maximum flux density, core/copper losses, leakage/magnetizing inductances, windings parasitic capacitances, and input/output voltage, current, and power values. Finally, the systems' overall efficiency is calculated and presented. 
    more » « less
  3. Switched Tank Converter(STC) is one kind of Resonant Switch Capacitor(ReSC) that can be considered as a good candidate for data center application with high power efficiency and high power density. On the other hand, LLC converter can also realize very good performance for low voltage application. Although STC can realize relatively higher efficiency than LLC converter in the light load since the core loss is saved, LLC can keep relatively higher efficiency in the heavy load than STC does since the conduction loss of LLC is smaller. The main reason is because transformer’s winding resistance is smaller than semiconductor devices’ resistance, and this is very important for high current application.In order to utilize the benefits of the STC and the LLC converter together, this paper proposes a family of the novel Switch Capacitor based Integrated Matrix Autotransformer LLC Converters (SCIMAC). The proposed converters share the same high voltage side circuit of the STC with low voltage stress devices. Different from the traditional LLC converter with an isolated transformer, the proposed SCIMAC utilizes one autotransformer with only the secondary side windings similar to LLC's secondary side. There are several advantages that can be realized of the SCIMAC: 1). Low figure of merit (FOM) devices can be adopted to realize higher efficiency due to the low voltage stress of the SCIMAC. 2). Higher power efficiency can be realized when compared with STC converter in heavy load because the resistance of the autotransformer’s windings is lower than semiconductor devices’ resistance. 3). The primary side winding loss of the transformer is saved to further increase the efficiency. 4) ZVS turning on can be realized by the magnetizing current of the core. 
    more » « less
  4. In this study, a four-port solid-state transformer (SST) with decoupled control scheme to control the power flow and the output voltage is proposed. The proposed decoupled control scheme controls all of the four ports' powers independently. In addition, the design of the four-port transformer including core material selection and winding placement is investigated. The designed transformer is modeled in ANSYS-Maxwell and also co-simulated with ANSYS-Simplorer. The operating frequency of the system is designed for 100 kHz; therefore, a very compact size is obtained for the entire multi-port converter. The performance of the proposed system is validated throughout MATLAB/Simulink simulation and experimental studies carried out for a 10kW/port SST prototype. The obtained results show that the four-port SST provides an interface for four-different power supplies or loads. It is seen that the proposed decoupled control scheme can control the output voltage at the desired value and track the reference power signals for each port. It provides as well a good steady state and dynamic performance. 
    more » « less
  5. null (Ed.)
    In this paper, design of a compact high frequency four-port transformer for a Solid-State Transformer (SST) arrangement is presented. Unlike other SSTs, the four-port system integrates three active sources and a load port with galvanic isolation via a single transformer core. In addition to this feature, one of the three source ports is designed to operate at Medium Voltage (MV) 7.2kV for direct connection to 4.16kV AC grid, while other ports nominal voltages are rated at 400V. The transformer is designed to operate at 50kHz and to supply 25kW/port. Thus, the proposed system connects the MV grid, Energy Storage System (ESS), PV, and DC load to each other on a single common transformer core. Based on the system power demand and availability of renewable energy resources, utility and energy storage ports can either supply or draw power, while PV port can only supply power, maintaining the required demand for the load. This work focuses mainly on the High Frequency Transformer (HFT) design. An extensive study is carried out to obtain the optimal, compact, cost effective, and high efficiency model. Modeling, mathematical, and simulation results are derived and presented to demonstrate the viability of this design. 
    more » « less