Imperfect labels are ubiquitous in real-world datasets. Several recent successful methods for training deep neural networks (DNNs) robust to label noise have used two primary techniques: filtering samples based on loss during a warm-up phase to curate an initial set of cleanly labeled samples, and using the output of a network as a pseudo-label for subsequent loss calculations. In this paper, we evaluate different augmentation strategies for algorithms tackling the "learning with noisy labels" problem. We propose and examine multiple augmentation strategies and evaluate them using synthetic datasets based on CIFAR-10 and CIFAR-100, as well as on the real-world dataset Clothing1M. Due to several commonalities in these algorithms, we find that using one set of augmentations for loss modeling tasks and another set for learning is the most effective, improving results on the state-of-the-art and other previous methods. Furthermore, we find that applying augmentation during the warm-up period can negatively impact the loss convergence behavior of correctly versus incorrectly labeled samples. We introduce this augmentation strategy to the state-of-the-art technique and demonstrate that we can improve performance across all evaluated noise levels. In particular, we improve accuracy on the CIFAR-10 benchmark at 90% symmetric noise by more than 15% in absolute accuracy, and we also improve performance on the Clothing1M dataset.
more »
« less
Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels
Deep neural networks (DNNs) have achieved tremendous success in a variety of applications across many disciplines. Yet, their superior performance comes with the expensive cost of requiring correctly annotated large-scale datasets. Moreover, due to DNNs’ rich capacity, errors in training labels can hamper performance. To combat this problem, mean absolute error (MAE) has recently been proposed as a noise-robust alternative to the commonly-used categorical cross entropy (CCE) loss. However, as we show in this paper, MAE can perform poorly with DNNs and challenging datasets. Here, we present a theoretically grounded set of noise-robust loss functions that can be seen as a generalization of MAE and CCE. Proposed loss functions can be readily applied with any existing DNN architecture and algorithm, while yielding good performance in a wide range of noisy label scenarios. We report results from experiments conducted with CIFAR-10, CIFAR-100 and FASHIONMNIST datasets and synthetically generated noisy labels.
more »
« less
- Award ID(s):
- 1748377
- PAR ID:
- 10083366
- Date Published:
- Journal Name:
- 32nd Conference on Neural Information Processing Systems (NeurIPS)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Designing robust loss functions is popular in learning with noisy labels while existing designs did not explicitly consider the overfitting property of deep neural networks (DNNs). As a result, applying these losses may still suffer from overfitting/memorizing noisy labels as training proceeds. In this paper, we first theoretically analyze the memorization effect and show that a lower-capacity model may perform better on noisy datasets. However, it is non-trivial to design a neural network with the best capacity given an arbitrary task. To circumvent this dilemma, instead of changing the model architecture, we decouple DNNs into an encoder followed by a linear classifier and propose to restrict the function space of a DNN by a representation regularizer. Particularly, we require the distance between two self-supervised features to be positively related to the distance between the corresponding two supervised model outputs. Our proposed framework is easily extendable and can incorporate many other robust loss functions to further improve performance. Extensive experiments and theoretical analyses support our claims. Code is available at https://github.com/UCSC-REAL/SelfSup_NoisyLabel.more » « less
-
Existing research on learning with noisy labels mainly focuses on synthetic label noise. Synthetic label noise, though has clean structures which greatly enable statistical analyses, often fails to model the real-world noise patterns. The recent literature has observed several efforts to offer real-world noisy datasets, e.g., Food-101N, WebVision, and Clothing1M. Yet the existing efforts suffer from two caveats: firstly, the lack of ground-truth verification makes it hard to theoretically study the property and treatment of real-world label noise. Secondly, these efforts are often of large scales, which may result in unfair comparisons of robust methods within reasonable and accessible computation power. To better understand real-world label noise, it is important to establish controllable and moderate-sized real-world noisy datasets with both ground-truth and noisy labels. This work presents two new benchmark datasets, which we name as CIFAR-10N, CIFAR-100N, equipping the training datasets of CIFAR-10 and CIFAR-100 with human-annotated real-world noisy labels that we collect from Amazon Mechanical Turk. We quantitatively and qualitatively show that real-world noisy labels follow an instance-dependent pattern rather than the classically assumed and adopted ones (e.g., class-dependent label noise). We then initiate an effort to benchmark a subset of the existing solutions using CIFAR-10N and CIFAR-100N. We further proceed to study the memorization of correct and wrong predictions, which further illustrates the difference between human noise and class-dependent synthetic noise. We show indeed the real-world noise patterns impose new and outstanding challenges as compared to synthetic label noise. These observations require us to rethink the treatment of noisy labels, and we hope the availability of these two datasets would facilitate the development and evaluation of future learning with noisy label solutions. The corresponding datasets and the leaderboard are publicly available at http://noisylabels.com.more » « less
-
We study the problem of learning conditional generators from noisy labeled samples, where the labels are corrupted by random noise. A standard training of conditional GANs will not only produce samples with wrong labels, but also generate poor quality samples. We consider two scenarios, depending on whether the noise model is known or not. When the distribution of the noise is known, we introduce a novel architecture which we call Robust Conditional GAN (RCGAN). The main idea is to corrupt the label of the generated sample before feeding to the adversarial discriminator, forcing the generator to produce samples with clean labels. This approach of passing through a matching noisy channel is justified by accompanying multiplicative approximation bounds between the loss of the RCGAN and the distance between the clean real distribution and the generator distribution. This shows that the proposed approach is robust, when used with a carefully chosen discriminator architecture, known as projection discriminator. When the distribution of the noise is not known, we provide an extension of our architecture, which we call RCGAN-U, that learns the noise model simultaneously while training the generator. We show experimentally on MNIST and CIFAR-10 datasets that both the approaches consistently improve upon baseline approaches, and RCGAN-U closely matches the performance of RCGAN.more » « less
-
We study the problem of learning conditional generators from noisy labeled samples, where the labels are corrupted by random noise. A standard training of conditional GANs will not only produce samples with wrong labels, but also generate poor quality samples. We consider two scenarios, depending on whether the noise model is known or not. When the distribution of the noise is known, we introduce a novel architecture which we call Robust Conditional GAN (RCGAN). The main idea is to corrupt the label of the generated sample before feeding to the adversarial discriminator, forcing the generator to produce samples with clean labels. This approach of passing through a matching noisy channel is justified by corresponding multiplicative approximation bounds between the loss of the RCGAN and the distance between the clean real distribution and the generator distribution. This shows that the proposed approach is robust, when used with a carefully chosen discriminator architecture, known as projection discriminator. When the distribution of the noise is not known, we provide an extension of our architecture, which we call RCGAN-U, that learns the noise model simultaneously while training the generator. We show experimentally on MNIST and CIFAR-10 datasets that both the approaches consistently improve upon baseline approaches, and RCGAN-U closely matches the performance of RCGAN.more » « less
An official website of the United States government

